

	
	
	
	

Power	BI	MVP	Book
	
	
	

First	Edition
August	2019

	
	

High-Level	Table	of	Contents
Part	I:	Getting	Data
Chapter	1:	Using	Power	Query	to	tell	your	story	from	your	Facebook	Data
Chapter	2:	Get	Data	from	Multiple	URLs	Using	Web	By	Example
Chapter	3:	One	URL,	Many	Tables
Part	II:	Data	Preparation
Chapter	4:	Creating	Calendar	Dimensions	with	Power	Query
Chapter	5:	Transform	and	combine	your	data	with	ETL	tool	named	Power	Query
Chapter	6:	Creating	a	Shared	Dimension	in	Power	BI	Using	Power	Query:
Basics	and	Foundations	of	Modeling
Chapter	7:	Data	Modeling	with	Relational	Databases
Part	III:	DAX	and	Calculations
Chapter	8:	Up	and	Running	with	DAX	as	Quick	as	Possible
Chapter	9:	Power	BI	is	Not	the	Same	as	Excel
Part	IV:	AI	and	Power	BI
Chapter	10:	AI	for	Business	Users	in	Dataflow	and	Power	BI	Desktop
Chapter	11:	AI	in	Power	BI	Desktop
Chapter	12:	Automated	Machine	Learning	in	Power	BI
Part	V:	Integration	of	Power	BI	with	other	services	and	tools
Chapter	13:	Power	BI	REST	API
Chapter	14:	Real-Time	Streaming	Datasets
Part	VI:	Power	BI	for	Enterprise
Chapter	15:	Introduction	to	Conversation-Centric	Design ™
Chapter	16:	Understanding	when	to	move	to	Power	BI	Premium
Chapter	17:	Incremental	refresh
Chapter	18:	Report	Server	Administration
Part	VII:	Architecture
Chapter	19:	Governance
Chapter	20:	Architecture	of	a	Power	BI	Solution	in	an	Enterprise	Environment
Chapter	21:	A	Power	BI-only	Solution	for	Small	Organizations

Table	of	Contents
High-Level	Table	of	Contents
Foreword
Introduction
Who	is	this	book	for
Who	this	book	is	not	for
How	the	book	is	organized

Chapter	1:	Using	Power	Query	to	tell	your	story	from	your	Facebook	Data
Introduction
Power	Query
Let’s	drill	into	your	Facebook	data	to	extract	your	story
Facebook	Graph	API
Power	Query	Analysis	1
Facebook	Feed	Trend	Analysis

Power	Query	Analysis	2
Facebook	Photos	by	Location	Tracking

Summary
About	the	Author

Chapter	2:	Get	Data	from	Multiple	URLs	Using	Web	By	Example
Get	Data	from	Web	By	Example	from	a	Single	Web	Page
Create	a	Table
Create	a	Parameter	and	a	Function	to	get	Data	from	Multiple	Web	Pages
1. Create	a	Parameter
2. Create	a	Function
3. Get	Data	from	Multiple	Web	Pages

Summary
About	the	Author

Chapter	3:	One	URL,	Many	Tables
Part	1:	Manual	Retrieval	of	Data
Part	2:	Custom	Functions

Part	3:	Unknown	Number	of	Pages
Part	4:	Fiddling	with	the	URL
Part	5:	Putting	it	All	Together
About	the	Author

Chapter	4:	Creating	Calendar	Dimensions	with	Power	Query
To	Create	or	not	to	Create?
Dynamic	Calendars	vs	the	Corporate	Database
Doesn’t	Power	BI	Use	Default	Date	Tables?
Sample	Data

Creating	a	Dynamic	Calendar	Table
Recipe	for	StartDate	and	EndDate	Queries
Building	the	Base	Calendar	table
Add	any	Additional	Columns	Needed

Add	Fiscal	Year	Ends	to	Your	Calendar
Fiscal	Periods
Fiscal	Year	End

Building	a	4-4-5,	4-5-4	or	5-4-4	(ISO)	Calendar
Creating	StartDate	and	EndDate	queries	for	4-4-5	calendars
Creating	the	“DayID”	column
Creating	the	remaining	PeriodID	columns
Adding	Other	Fiscal	Periods
Fiscal	Year	Columns
X	of	Year	Columns
X	of	Quarter	Columns
X	of	Month	Columns
X	of	Week	Columns
Start	of	X	Columns
End	of	X	Columns

Summary
About	the	Author

Chapter	5:	Transform	and	combine	your	data	with	ETL	tool	named	Power	Query

What	is	Power	Query?
Where	is	used	Power	Query?
Why	do	people	love	Power	Query?
ETL:	The	concept
Building	the	ETL	with	Power	Query
Why	do	we	get	taken	to	a	blank	pane?
Transform	ribbon	tab
Use	first	Row	as	Headers	(Promoted	Headers	task)
Changing	Data	Type
Add	Column	tab
Adding	custom	column	with	M	Formula

View	tab
Advanced	Editor

Summary
About	the	Author

Chapter	6:	Creating	a	Shared	Dimension	in	Power	BI	Using	Power	Query:
Basics	and	Foundations	of	Modeling
Sample	Dataset
Design	Challenge
Many-to-many	Relationship	Issue
Both-directional	Relationship	Issue
Master	List	Does	Not	Exist!

Shared	Dimension:	Solution
Creating	Shared	Dimension
Prepare	sub-tables
Set	all	column	names	to	be	the	same
Append	all	three	tables
Remove	Duplicates
Date	Dimension
Best	Practice	Design:	Star	Schema	and	Shared	Dimensions

Summary

About	the	Author
Chapter	7:	Data	Modeling	with	Relational	Databases
Data	Modeling
Relational	Database
Data	Type
Additional	Fact	Table
Many-to-Many	or	Bi-Directional	Filter
Hierarchies
Additional	Comments

Summary
About	the	Author

Chapter	8:	Up	and	Running	with	DAX	as	Quick	as	Possible
Introduction
Your	First	DAX	Expression
Your	Second	DAX	Expression
Another	Example
Calculated	Tables
The	CALCULATE	Function
Variables	and	Return
Time	Intelligence	–	YTD
Time	Intelligence	–	PREVIOUSMONTH
X	vs	Non-X	Functions
Best	Practice:	Organize	your	code
Best	Practice:	Naming	Columns	&	Measures
Best	Practice:	Formatting
Other	Resources
Summary
About	the	Author

Chapter	9:	Power	BI	is	Not	the	Same	as	Excel
Introduction
Some	Things	Are	the	Same	in	Power	BI	and	Excel

Built	with	You	in	Mind
DAX	is	a	Functional	Language
DAX	has	Many	Common	Functions	with	Excel
Sometimes	Functions	Are	Similar,	But	Have	Small	Differences

Many	Things	Are	Very	Different	Between	Power	BI	and	Excel
Power	BI	is	a	Database,	Excel	is	a	Spreadsheet
Database

Tips	to	Get	You	Started	as	You	Move	to	Power	BI
DAX	Calculated	Columns	vs	Measures	vs	Tables
Using	Visuals	to	Structure	your	Output
Filter	First,	Calculate	Second

About	the	Author
Chapter	10:	AI	for	Business	Users	in	Dataflow	and	Power	BI	Desktop
Cognitive	Service	in	Power	BI
AI	in	Dataflow
Image	Tag	in	Power	BI

Key	Influencer
List	of	Questions
Get	it!

Use	It!
Summary
About	the	Author

Chapter	11:	AI	in	Power	BI	Desktop
Introduction
Linear	Regression
Analytic	Line
DAX
R	Visual
Summary

Text	Mining
Word	Cloud

Azure	Cognitive	Services
Azure	Machine	Learning
R	in	Azure	Machine	Learning
R	as	a	Power	Query	Transformation
R	Visual

Summary
About	the	Author

Chapter	12:	Automated	Machine	Learning	in	Power	BI
What	is	Machine	Learning	(ML)?
What	are	the	challenges	of	Traditional	ML?
What	is	Automated	Machine	Learning	(AutoML)?
Automated	Machine	Learning	(AutoML)	in	Power	BI
Enabling	AutoML	in	your	Power	BI	Premium	Subscription
Creating	an	AutoML	Model	in	Power	BI
Creating	an	AutoML	Model	Step	by	Step
1-	Data	prep	for	creating	ML	Model:
2-	Configuring	the	ML	Model	Inputs
3-	ML	Model	Training
4-	AutoML	Model	Explainability
5-	AutoML	Model	Report
6-	Applying	the	AutoML	Model

Deep	dive	into	the	3	types	of	ML	Models
1-	Binary	Prediction	Models
2-	Classification	Models
3-	Regression	Models

Summary
About	the	Author

Chapter	13:	Power	BI	REST	API
Getting	ready	to	use	Power	BI	REST	API
Register	your	developer	application
Register	your	application	in	Azure	Portal

Preparing	Visual	Studio	to	use	the	Power	BI	REST	API
Summary
About	the	Author

Chapter	14:	Real-Time	Streaming	Datasets
Introduction
Real-Time	Datasets
Push	Datasets
Streaming	Datasets
PubNub	Datasets

Creating	Real-Time	Datasets
Power	BI	Service	UI
Power	BI	REST	API
Azure	Stream	Analytics
PubNub

Push	Data	to	Streaming	Datasets
Visualizing	Real-Time	Datasets
Streaming	datasets
Push	datasets

Summary
About	the	Author

Chapter	15:	Introduction	to	Conversation-Centric	Design ™
“Spreadsheet	on	a	Web	Page”
What’s	really	going	on	here?
Conversation-Centric	Design™	Overview
Why	formal	interactions?
Process	Overview

A	Real	World	Example
Summary
About	the	Author
Trebuel	Gatte,	CEO,	MarqueeInsights.com

Chapter	16:	Understanding	when	to	move	to	Power	BI	Premium

Dedicated	Performance
Free	Users
XMLA	End	Points
Higher	Refreshes

Incremental	Refresh
Refreshes	are	quicker
Fewer	resources	are	required

Dataset	size	larger	than	1GB
Actual	memory	consumption

Paginated	Reports
Geographic	Distribution
Data	Sovereignty
Performance

Dataflows
Linked	Entities
Computed	Entities
Incremental	refresh
Parallel	Execution	of	transformations
Enhanced	Compute	Engine

Monitoring	for	Power	BI	Premium
Summary
About	the	Author

Chapter	17:	Incremental	refresh
Introduction
What	is	incremental	refresh	and	how	does	it	work
Requirements
Premium	Workspace
Query	Folding	data	source
Transaction	dates
Enabled	Incremental	Refresh	feature

Setting	up	Incremental	refresh

Step	1	–	Create	range	parameters
Step	2:	Filter	dataset	using	parameters
Step	3:	Configure	incremental	refresh	in	Power	BI	desktop
Step	4:	Deploy	and	publish	report

Looking	under	the	covers
Limitations	and	things	to	look	out	for
Summary
About	the	Author

Chapter	18:	Report	Server	Administration
Power	BI	Report	Server
Power	BI	Report	Server	Can	be	installed	on	the	following	Microsoft
operating	systems

Web	browser:
Download	Power	BI	Report	Server
Installing	Power	BI	Report	Server
Configuring	the	Power	BI	Report	Server
Web	Setup
Installing	Power	BI	Desktop	Report	Server

Developing	Reports	with	Power	BI	Report	Server
Managing	Datasets	on	the	Report	Server
Schedule	Refresh	Requirement

Resources/	References
Summary
About	the	Author

Chapter	19:	Governance
Introduction
Process
1-Development	process
2-Publishing	Process
3-Sharing	Process
4-Security	Process

5-Naming	standard	process
6-Support	process
7-Tenant	Settings	process

Training
Training	categories

Monitoring
Artefact	inventory
Monitoring	usage
Monitoring	the	Power	BI	On-Premise	Gateway

Roles
Power	BI	Administrator
Power	BI	Gateway	Administrator
Data	steward
Power	BI	Auditor
Power	BI	Supporter

Summary
About	the	Author

Chapter	20:	Architecture	of	a	Power	BI	Solution	in	an	Enterprise	Environment
The	Big	Picture
Identity	Management
On-Premises	Active	Directory
Credential	Spread	Issues
Hybrid	Identity
Integration	Applications
Azure	Active	Directory	Offerings
Enhanced	Security	on	Terminations

Implementing	Hybrid	Identity
Application	Integration
Authentication	for	External	Users
Password-less	Implementation

On-Premises	Source	Data

Dimensional	Data	Models
Staging	and	Cleansing	Data
Analytic	Data	Models
Moving	the	data	between	databases
Paginated	Reporting
Providing	Power	BI	Access	to	the	On-Premises	Data
Enterprise	Gateway
Power	BI	Service	for	Dashboards
Power	BI	Service
Power	BI	Workspaces
Connecting	Other	Applications

Summary
About	the	Author

Chapter	21:	A	Power	BI-only	Solution	for	Small	Organizations
Background
Putting	a	Solution	Together	with	Power	BI
The	Actors

The	Solution
Data	Movement	and	Processing
Security

Development	life-cycle
Source	control
Deployment

Summing	it	up
About	the	Author

	
	

Foreword
	
Since	Power	BI’s	launch	in	July	2015,	the	product	has	literally	taken	the	world
by	storm.	In	a	world	where	business	intelligence	solutions	were	mostly	on-
premise,	Power	BI	came	in	with	a	cloud	first,	software-as-a-service	solution.	BI
solutions	required	time	and	patience	to	get	up	and	running	–	Power	BI	launched
with	the	goal	of	giving	customers	“5	seconds	to	sign	up,	5	minutes	to	wow”.	BI
solutions	were	very	expensive	–	with	authoring	tools	upwards	of	$1,500	per	user
and	end-user	licenses	at	$500	or	more	–	Power	BI	made	BI	truly	accessible,
Power	BI	Desktop	was	and	is	completely	free,	and	end-user	pricing	is	simply
$10	per	user,	per	month.	And	finally,	in	a	world	where	major	BI	vendors	updated
their	products	about	once	a	year	–		Power	BI	was	intensely	focused	on	what	our
customers	and	community	wanted	us	to	build	–	ideas	were	submitted	and	voted
on	at	ideas.powerbi.com,	and	we	released	new	features	weekly	in	the	Power	BI
service,	and	a	new	release	of	Power	BI	Desktop	every	month.	This	resulted	in
customers	and	the	community	falling	in	love	with	the	product,	and	in	massive
growth	of	Power	BI.	In	a	world	that’s	awash	with	data,	Power	BI	helps
customers	make	sense	of	it	all	and	truly	drive	a	data	culture	–	where	every
employee	can	make	better	decision	based	on	data.	In	just	4	short	years	since
launch,	Power	BI	is	now	used	in	over	95%	of	the	Fortune	500	and	is	recognized
as	the	clear	industry	leader.
One	of	the	most	important	factors	in	Power	BI’s	success	is	the	role	of	the
community.	I’ve	known	Reza	and	many	of	the	authors	of	this	book	for	pretty
much	most	of	Power	BI’s	life.	Reza	and	others	deserve	a	lot	of	the	credit	for
getting	the	Power	BI	word	out,	for	helping	our	customers	learn	and	understand
the	product,	and	they	have	been	great	partners	for	the	Power	BI	engineering
team	in	shaping	the	future	of	Power	BI.	They’ve	applauded	when	we	did	things
well,	and	called	us	out	when	we	didn’t	quite	measure	up.	We’ve	very	grateful	for
their	contributions.
In	this	book,	you	get	to	learn	directly	from	the	folks	who	know	Power	BI	best.
	
Arun	Ulag,	General	Manager,	Power	BI,	Microsoft

https://www.linkedin.com/in/arun-ulag-086b576/

Introduction
	
Power	BI	is	the	Microsoft	cloud-based	reporting	tool,	great	for	self-service
analysis,	as	well	as	enterprise	reporting.	Power	BI	with	this	name	first
introduced	in	2015,	but	the	product	has	a	long	fundamental	history	using	SQL
Server	Analysis	Services	engine	and	Excel	Power	Pivot.	Learning	Power	BI	is
not	just	useful	for	BI	developers,	but	also	for	data	analysts	to	understand	how	to
leverage	the	tool	to	analyze	their	data.
Power	BI	MVP	book	is	not	like	a	normal	book	that	you	use	to	learn	Power	BI.
This	book	is	a	collective	of	articles	from	twenty	one	Power	BI	MVPs.	Each
chapter	focused	on	a	very	particular	subject.	The	author	of	that	chapter	as	the
subject	matter	expert	shared	their	opinion	and	experience	and	knowledge	with
the	reader	specifically.	This	book	is	not	covering	all	aspects	of	Power	BI	product
and	toolset,	and	it	never	intended	to	do	so.	For	learning	Power	BI	from	beginner
level	to	advanced,	you	have	to	read	multiple	books,	and	there	are	many	books	in
the	market	for	it.	Some	of	those	books	are	already	used	as	a	reference	in	chapters
of	this	book.

Who	is	this	book	for
-								Power	BI	Report	Developers:	If	you	are	building	reports	with	Power	BI,

this	book	has	great	tips	that	can	help	you	in	building	better	reports.
-								Architects:	If	you	are	an	architect	and	want	to	implement	a	strategy	and

governance	for	Power	BI	usage	in	your	organization,	this	book	has	tips
and	chapters	for	you.

-								Citizen	Data	Scientists:	If	you	are	not	a	data	scientist,	but	want	to	learn
easy	ways	of	using	AI	functions	with	Power	BI,	this	book	has	explained
some	tricks	for	you.

-								.NET	Developers:	If	you	are	a	programmer	or	developer,	who	wants	to
extend	possibilities	of	using	Power	BI,	and	embed	that	in	your	application,
this	book	will	show	you	methods	for	it.

-								Consultant	and	Expert:	If	you	are	already	using	Power	BI	and	consider
yourself	as	an	expert	in	the	field,	this	book	will	give	you	a	great
experience	that	other	experts	are	sharing	with	you	in	their	real-world
scenarios.	This	can	be	a	good	reference	book	in	your	bookshelves	to	go
back	and	read	some	of	the	best	practices	time	by	time.

Who	this	book	is	not	for
-								This	is	not	a	book	to	learn	Power	BI	from	zero.	There	are	beginner

chapters,	but	there	is	no	single	story	in	the	entire	book	to	follow.
-								This	is	not	a	book	that	teaches	you	all	about	Power	BI.	There	are	many

subjects	that	are	not	covered	in	this	book,	because	of	time	constraints,	and
also	the	scope	of	things	to	learn	in	the	world	of	Power	BI.	This	is	not	one
book;	learn	it	all.

	

How	the	book	is	organized
Each	chapter	is	written	on	a	specific	subject	by	a	different	author.	The	book	is
organized	in	this	way,	that	as	a	reader,	you	can	choose	any	chapter	without
needing	to	read	other	chapters	in	advance,	start	from	any	chapter,	and	finish	at
any	chapter	you	want.	Here	is	what	you	will	learn	through	this	book:
In	chapter	1,	Anil	Maharjan	explains	on	how	you	can	extract	 the	 story	behind
your	Facebook	data.	He	shows	by	using	Power	Query	along	with	Power	BI	you
can	extract	your	Facebook	data	easily	and	analyze	your	own	story	by	using	your
Facebook	data.	This	chapter	helps	you	to	learn	about	Power	Query	and	Power	BI
and	shows	you	how	to	use	self-service	BI	based	on	your	Facebook	data.
In	chapter	2,	Indira	Bandari	explains	how	to	scrape	data	off	a	blog	site
(http://radacad.com/blog)	using	the	“Add	Data	By	Example”	button	in	Power	BI.
She	then	uses	Power	Query	to	create	a	function	that	gets	the	blog	URLs	from	a
table	and	extract	the	data	from	these	URLs.		This	process	can	be	extended	to
extract	data	from	any	website	that	has	a	pattern.		
In	chapter	3,	Liam	Bastick	considers	how	to	import	a	multiple	page	table	into
Power	Query	when	the	URL	does	not	appear	to	change.		It’s	harder	than	you
might	think	and	took	the	best	ideas	of	several	contributors	to	construct	a
practical	solution.		Nonetheless,	it’s	a	very	useful	and	important	technique	to
learn	and	highlights	common	problems	faced	when	extracting	data	from	the
internet.
In	chapter	4,	Ken	Puls	shows	you	how	easy	it	is	to	create	dynamic	calendar
tables	on	the	fly	with	Power	Query	inside	Power	BI.		Whether	you	need	a
standard	12-month	calendar	with	a	December	31	year	end,	a	12-month	calendar
with	a	March	31	year	end,	or	even	a	4-4-5	calendar,	Power	Query	can	create	it
for	you	if	your	IT	department	doesn’t	have	one	you	can	use.		And	the	best	part?	
They’ll	automatically	update	to	cover	the	entire	data	range	of	your	model!
In	chapter	5,	Jesus	Gil	explains	how	easy	it	is	to	use	Power	Query,	the	ease	of
use,	application	and	implementation	with	the	tool.	It	quickly	explains	the
concept	of	ETL	and	how	we	can	build	it	with	Power	Query,	either	by	clicking	or
through	the	M	language.
In	chapter	6,	Reza	Rad	explained	some	basics	of	Power	BI	modelling.	He
explained	why	it	is	important	to	have	separate	tables,	and	what	are	the
advantages	of	having	separate	tables.	He	then	explains	how	you	can	use	Power
Query	to	create	fact	tables	and	dimension	tables,	and	build	a	star	schema,	and	as

http://radacad.com/blog

a	result,	build	a	better	data	model	that	answers	the	reporting	requirements.				
In	Chapter	7,	Thomas	LeBlanc	looks	at	the	benefits	of	a	good	relational	data
model	in	Power	BI.	If	someone	is	using	a	flat	file	and	flattened	table	for	Power
BI,	data	modelling	improves	the	re-usability	of	a	single	source	of	truth.	Concepts
covered	include	relationships	between	tables,	using	the	correct	data	types	for
columns	as	well	as	measures	for	repeatable	calculations.	The	relational	database
example	is	a	dimensional	model	and	the	chapter	concludes	with	a	look	at	a
many-to-many	relationship	with	bi-directional	filtering.
In	Chapter	8,	Ike	Ellis	will	bring	your	Power	BI	skills	to	the	next	level	by
introducing	you	to	the	fundamental	concepts	of	DAX.		If	you've	avoided	DAX
because	it	seems	like	a	complicated	programmer	feature,	this	chapter	will	show
you	that	DAX	is	not	that	difficult.			This	chapter	will	show	you	the	path	to	DAX
mastery	and	will	make	DAX	the	first	place	you'll	go	when	faced	with	Power	BI
challenges.
In	chapter	9,	Matt	Allington	explains	what	the	differences	are	between	Microsoft
Excel	and	Power	BI.		Understanding	what	is	the	same	and	what	is	different	is
important	for	people	that	are	trying	to	move	from	a	traditional	Excel	world	to	a
structured	self-service	BI	world.
In	chapter	10,	Leila	Etaati	provides	an	overview	of	new	AI	capabilities	and
features	in	Power	BI	service	and	Power	BI	desktop.	First,	she	explained	how
business	users,	using	AI	very	easy,	without	writing	any	codes	only	with	a	couple
of	clicks.	In	this	chapter,	she	shows	two	different	possibilities	of	consuming	AI.
First	how	as	a	business	user	can	analyse	the	text	in	Power	BI	service,	next	part,
she	explains	how	to	use	some	AI-powered	visuals	such	as	Key	Influencer	in
Power	BI	desktop	to	analyse	the	data	without	knowing	the	machine	learning
concepts.
In	chapter	11,	Markus	Ehrenmüller-Jensen	describes	some	of	the	many
possibilities	to	leverage	the	use	of	Artificial	Intelligence	(AI)	in	Power	BI
Desktop.	He	took	Linear	Regression	and	Text	Mining	as	an	example	to	show
you,	how	to	make	use	of	DAX,	R,	Power	Query	(M),	Cognitive	Serves	and
Azure	Machine	Learning.	
In	Chapter	12,	Ashraf	Ghonaim	explains	the	definition	of	Automated	Machine
Learning	(AutoML)	and	how	this	breakthrough	self-service	feature	empowers
Power	BI	users	to	leverage	machine	learning	capabilities	and	become	true
Citizen	Data	Scientists.			

In	chapter	13,	Eduardo	Castro	explained	how	to	use	the	Power	BI	REST	API	to
administer	and	integrate	Power	BI	with	other	applications.	He	shows	how	to	use
C#	to	manage	workspaces,	permissions	and	other	administration	related	task
using	Power	BI	REST	API.
In	chapter	14,	Manohar	Punna	introduces	various	streaming	solutions	available
with	Power	BI	Service.	He	takes	you	on	a	step-by-step	implementation	of	these
solutions	using	different	scenarios.	The	learnings	in	this	chapter	give	you	hands-
on	experience	in	building	real-time	streaming	solutions	in	Power	BI.
In	Chapter	15,	Treb	Gatte	will	guide	you	through	designing	your	BI	content	so
that	it	is	aligned	to	the	business	need.	You’ll	get	an	introduction	to	the
Conversation-Centric	Design	Design™	approach	that	will	help	you	with	this
process.	It’ll	enable	you	to	address	two	common	problems	in	BI	content
development;	ensuring	you	can	manage	scope	easily	and	ensuring	that	the
outcomes	are	aligned	with	where	the	end	user	should	use	the	content.
In	Chapter	16,	Gilbert	Quevauvilliers	will	look	at	Power	BI	Premium	where
there	are	a	lot	of	options	available	to	you	with	Power	BI	Premium.	At	times
when	there	are	too	many	options	and	it	can	potentially	be	a	challenge	to
understand	which	features	are	applicable	for	your	situation.	In	this	chapter
Gilbert	will	provide	a	better	understanding	of	what	these	options	are.	By	having
a	deeper	understanding	of	the	Power	BI	Premium	features,	it	will	allow	you	to
make	a	more	informed	decision	on	looking	to	move	to	Power	BI	Premium.
In	Chapter	17,	Michael	Johnson	talks	about	how	Incremental	Refresh	in	Power
BI	is	used	to	reduce	the	amount	of	data	required	to	refresh	reports	improving
both	refresh	time	and	reliability	of	these	refreshes.
In	chapter	18,	Shree	Khanal	explains	about	the	Power	BI	Report	Server’s	report
development,	deployment	and	steps	to	host	it.	He	highlights	how	interactive
reports	are	now	available	on-premises	servers	and	not	just	on	the	Power	BI
service.	On	top	of	that	he	explains	the	step-by-step	process	of	installing,
configuring	and	setting	up	the	Power	BI	Report	Server.
In	chapter	19,	Ásgeir	Gunnarsson	explains	how	you	can	tackle	Power	BI
governance.	You	will	learn	about	the	four	pillars	of	Power	BI	Governance
strategy,	processes,	training,	monitoring	and	roles.	Ásgeir	then	goes	into	each
pillar	and	explains	what	you	need	to	think	about	when	it	comes	to	governance
and	what	relevant	documents	can	contain.					
In	chapter	20,	Greg	Low,	shows	all	the	core	components	and	architecture	that

make	up	a	typical	enterprise	deployment	of	Power	BI.	Greg	spends	much	of	his
time	working	in	large	financial	enterprises.	All	of	them	want	to	implement
Power	BI	but	all	of	them	are	confused	about	how	it	would	best	fit	into	an
enterprise	environment.
In	chapter	21,	Gogula	Aryalingam	explains	about	how	using	only	Power	BI	you
can	create	a	complete	business	intelligence	solution	for	a	small	organization.
You	will	be	introduced	to	the	structure	upon	typical	business	intelligence	are
built	on,	and	how	the	same	structure	is	leveraged	to	build	the	Power	BI-only
solution	using	whichever	the	features	that	are	available.

Part	I:	Get	Data

Chapter	1:	Using	Power	Query	to	tell	your	story	from
your	Facebook	Data
	
Author:	Anil	Maharjan	
This	chapter	is	mainly	for	the	one	who	is	trying	to	extract	the	story	behind	their
Facebook	data	by	using	Power	Query.	By	using	Power	Query	along	with	Power
BI	 you	 can	 extract	 your	 Facebook	 data	 easily	 and	 analyze	 your	 own	 story	 by
using	your	Facebook	data.	Power	Query	can	connect	data	across	a	wide	variety
of	sources.	Facebook	 is	 just	one	of	 the	data	sources.	This	chapter	helps	you	 to
learn	about	Power	Query	and	Power	BI	and	shows	you	how	to	use	self-service
BI	based	on	your	Facebook	data.	

Introduction
Most	of	the	time	of	this	weekend,	I	spent	my	time	to	extract	the	story	behind	my
Facebook	data	by	using	Power	Query.	Power	Query	can	connect	data	across	a
wide	variety	of	sources,	where	Facebook	is	just	one	of	the	data	sources.	By	using
Power	Query,	you	can	extract	your	Facebook	data	easily	and	do	analysis	of	your
own	story	by	using	your	Facebook	data.	

Power	Query
Power	 Query	 is	 the	 Microsoft	 Data	 Connectivity	 and	 Data	 Preparation
technology	 that	 enables	 business	 users	 to	 seamlessly	 access	 data	 stored	 in
hundreds	of	data	 sources	and	 reshape	 it	 to	 fit	 their	needs,	with	an	easy	 to	use,
engaging	and	no-code	user	experience.	
Supported	data	sources	include	a	wide	range	of	file	types,	databases,	Microsoft
Azure	 services	 and	many	other	 third-party	 online	 services.	Power	Query	 also
provides	a	Custom	Connectors	SDK	so	 that	 third	parties	can	create	 their	own
data	connectors	and	seamlessly	plug	them	into	Power	Query.
You	can	learn	more	about	Power	Query	from	the	links	below:	
https://docs.microsoft.com/en-us/power-query/power-query-what-is-power-
query
https://docs.microsoft.com/en-us/power-query/power-query-quickstart-using-
power-bi
Previously,	 Microsoft	 Power	 Query	 for	 Excel	 was	 only	 an	 Excel	 add-in	 that
enhanced	 the	 self-service	 Business	 Intelligence	 experience	 in	 Excel	 by
simplifying	data	discovery,	access	and	collaboration.	
You	can	easily	download	the	Power	query	Excel	Add-In	from	the	link	below:	
	http://www.microsoft.com/en-us/download/details.aspx?id=39379
You	can	find	more	about	Power	View,	Power	Map,	Power	BI	and	Q&A	from	the
official	Microsoft	Power	BI	site	here:		
	https://docs.microsoft.com/en-us/power-bi/power-bi-overview

https://github.com/Microsoft/DataConnectors
https://docs.microsoft.com/en-us/power-query/power-query-what-is-power-query
https://docs.microsoft.com/en-us/power-query/power-query-quickstart-using-power-bi
http://www.microsoft.com/en-us/download/details.aspx?id=39379

Let’s	drill	into	your	Facebook	data	to	extract	your	story
Start	by	opening	the	Power	BI	Desktop	tool	which	is	free	one	and	can	easily	be
downloaded	and	installed	from	the	link:	https://powerbi.microsoft.com/en-
us/desktop/
Then	once	you	have	installed	Power	BI	Desktop,	go	to	the	Get	Data	tab	where
you	will	see	different	data	source	connection	types.	Choose	the	option	for	more
and	it	will	open	up	as	shown:

Figure	01-01:	Launching	the	Power	BI	Desktop	-Get	Data	tab	
Choose	the	online	services	tab	where	you	can	see	different	online	services	data
sources.	Facebook	is	one	of	them.	We’ll	connect	to	it	to	start	the	analysis.	

https://powerbi.microsoft.com/en-us/desktop/

Figure	01-02:	Selecting	Online	Services	Facebook	as	a	data	source	
You	could	also	use	the	‘Edit	Queries	tab’	in	Power	BI	Desktop	and	it	will	open
up	the	Power	Query	Editor	as	shown:	

Figure	01-03:	Editing	Edit	Queries	section	
From	here,	you	can	go	to	New	Source	tab	->	Online	Service	->	Facebook	which
will	open	up	as	below	and	ask	for	you	Facebook	account	credentials.	Log	in	to
Facebook	and	you	are	able	 to	get	your	Facebook	data	as	 like	 feed,	comments,

likes,	friends	etc.	

Figure	01-04:	Connecting	Facebook	account	credentials	login	in	section	

Figure	01-05:	Different	connection	data	list	from	Facebook		
Once	you	are	connected,	you	can	select	Feed	from	the	dropdown	list	of
connection	tab,	then	it	will	fetch	live	data	from	your	Facebook	account	as:	

Figure	01-06:	Getting	Data	Feed	from	Facebook	account		
Once	you	have	clicked	on	it,	it	will	load	these	data	and	make	one	Power	Query
as	Query1	where	we	can	rename	it	to	Facebook	Feed.	

Figure	01-07:	Power	Query	loading	data	from	Facebook	
Once	you	have	renamed	Query1	to	Facebook	Feed	by	right	clicking	and
renaming,	now	you	can	edit	using	the	Advanced	Editor	tab	to	edit	the	Power
Query	and	you	can	see	below	Power	Query	which	is	used	to	connect	with

Facebook	and	get	the	data.	Here	it	is	using	Facebook	Graph	API	v2.8.

Figure	01-08:	Power	Query	editor	and	Facebook	Graph	API	connection	

Facebook	Graph	API
The	Graph	API	 is	 the	 primary	 way	 to	 get	 data	 into	 and	 out	 of	 the	 Facebook
platform.	It's	an	HTTP-based	API	that	apps	can	use	to	programmatically	query
data,	post	new	stories,	manage	ads,	upload	photos,	and	perform	a	wide	variety	of
other	tasks.		
One	can	learn	more	about	Facebook	Graph	API	from	below	link:	
https://developers.facebook.com/docs/graph-api/overview
You	also	can	edit	 the	Power	Query	and	add	your	own	custom	Power	Query.	 If
you	need	to	select	only	certain	year	date	data	from	Facebook,	then	we	can	select
the	 particular	 year	 and	 do	 the	 analysis.	 For	 that,	 you	 need	 to	 edit	 your	 Power
Query.	One	can	you	below	Power	Query	to	select	only	2019	year	date	data	from
Facebook.	
let	
				feed	=	Facebook.Graph("https://graph.facebook.com/v2.8/me/feed"),	
				#"Added	Custom"	=	Table.AddColumn(feed,	"Year",	each
Date.Year(DateTime.FromText([created_time]))),	
					
				#"Filtered	Rows"	=Table.SelectRows(feed,each	([Year]	=	"2019"))	
				
in	
					
			#"Added	Custom",	
				#"Filtered	Rows"	=	Table.SelectRows(feed,	each	([Year]	=	2019))	
in	
				#"Filtered	Rows"	
	

https://developers.facebook.com/docs/graph-api/overview

Figure	01-09:	Custom	Power	Query	with	filter	Date	
Now	once	you	click	on	the	Close	and	Apply	button	and	load	the	feed	data	from
Facebook,	let’s	start	to	extract	some	stories	behind	your	own	Facebook	data.	

Figure	01-10:	Loading	data	from	Facebook	

Power	Query	Analysis	1
Facebook	Feed	Trend	Analysis
Now,	let’s	see	how	many	total	feeds	there	are	per	year.	For	this	analysis	you	need
to	change	the	created_time	into	date/time	format	by	editing	the	Facebook	feed
Query:

Figure	01-11:	changing	column	format	to	Date/Time	
Let’s	select	Stacked	Column	Chart	from	the	Visualization	section	then	select
created_time	field	in	Axis	and	id	field	in	Value.	It	will	automatically	make	id
field	as	count	of	id	in	the	value	section.	

Figure	01-12:	Visualization	using	Power	BI	Desktop	
That	will	then	show	us	how	many	total	feeds	we	are	doing	in	Facebook,	year	on
year.	Ultimately,	this	shows	how	much	time	you	spent	on	Facebook	too.	In	my
context	it	clearly	tells	us	that	I	have	been	using	Facebook	mostly	in	the	years	of
2008,	2009	and	2010.	I	had	completed	my	computer	engineering	course	in	2010
and	I	had	most	free	time	after	my	graduation.	So,	gradually	it	keeps	on
decreasing	once	I	joined	a	company	to	work.

Figure	01-13:	Visualization	using	Power	BI	Desktop	
Similarly,	 you	 can	 add	 a	 table	 visualization	 chart	 and	 select	 created_date	 and
message	 filed	 in	 order	 to	 see	what	 status/feed	or	message	you	have	posted	on
Facebook	in	any	particular	time.	Here,	I	have	saved	this	Power	BI		as	Power	BI
MVP	Book	and	added	title	of	visualization	as	Facebook	Feed	Trend	Analysis.	

Figure	01-14:	Visualization	using	Power	BI	Desktop	
Then	copy	the	first	chart	 that	we	had	created	using	Stacked	Column	Chart	and
changed	 into	Line	Chart	where	you	will	 see	 the	year	on	year	 trend	analysis	of
total	feeds.	You	can	also	drill	down	up	to	Day	level.	

Figure	01-15:	Visualization	using	Power	BI	Desktop	
	

Power	Query	Analysis	2
Facebook	Photos	by	Location	Tracking
Now,	let’s	see	photos	that	have	been	taken	on	particular	country	or	city	that	you
have	visited	and	check	In	on	Facebook.	For	this	analysis,	you	need	to	add	new
data	feed	and	new	worksheet	page.	To	add	page	just	you	can	see	the	plus	sign	in
the	bottom	side.	

Figure	01-16:	Adding	new	worksheet	or	page	in	Power	BI	Desktop	
For	adding	new	data	feed	from	Facebook	just	repeat	click	on	Get	Data->Online
Services->Facebook	and	then	select	Posts	from	the	dropdown	list.

Figure	01-17:	Adding	new	data	feed	from	Facebook	in	Power	BI	Desktop	
Here,	you	can	also	use	Blank	Query	option	in	Get	Data	tab	where	we	can	write
different	Power	Queries.	

Figure	01-18:	Using	Blank	Query	in	Power	BI	Desktop	
Once	you	click	on	the	Blank	Query	option	from	the	Get	Data	tab	dropdown	list
,it	will	open	up	as	below	as	Query1.	Next	go	to	the	Advanced	Editor	option	.	

Figure	01-19:	Using	Blank	Query	in	Power	BI	Desktop	

Once	 you	 click	 Advanced	 Editor	 tab	 it	 will	 pop	 up	 to	 where	 you	 can	 write
different	 Power	Queries.	 For	 Facebook	Photos	 by	Location	 tracking,	 I	will	 be
using	the	below	Power	Query.		

Figure	01-20:	Using	Blank	Query	in	Power	BI	Desktop	
let	
Source	=	Facebook.Graph("https://graph.facebook.com/v2.8/Me/posts?
fields=place,message,story,status_type,created_time,id,permalink_url,picture&with=location"),	
				#"Expanded	place"	=	Table.ExpandRecordColumn(Source,	"place",	{"location"},	{"place.location"}),	
				#"Expanded	place.location"	=	Table.ExpandRecordColumn(#"Expanded	place",	"place.location",
{"city",	"country",	"latitude",	"longitude",	"street",	"zip",	"located_in"},	{"place.location.city",
"place.location.country",	"place.location.latitude",	"place.location.longitude",	"place.location.street",
"place.location.zip",	"place.location.located_in"}),	
				#"Changed	Type"	=	Table.TransformColumnTypes(#"Expanded	place.location",
{{"place.location.latitude",	type	number},	{"place.location.longitude",	type	number},	{"created_time",	type
datetime}}),	
				#"Filtered	Rows"	=	Table.SelectRows(#"Changed	Type",	each	true)	
in	

#"Filtered	Rows"	
After	that,	put	the	above	Power	Query	in	the	Advanced	Editor	and	rename
Query1	to	Facebook	Photos	by	Location.		

Figure	01-21:	Using	Blank	Query	in	Power	BI	Desktop	
Then	you	need	to	change	the	picture,	permalink_url	and	Geo	location	fields	with
correct	data	category	type	in	order	to	render	picture	as	image,	url		as	links		and
Geo	 location	 fields	 will	 work	 on	 maps.	 So	 for	 this,	 you	 need	 to	 go	 to	 the
Modeling	tab	and	select	the	appropriate	Data	Category	value	from	dropdown	list
based	on	the	column	type.	
Please	map	to	below	Data	Category	type.	

Field	 Data	Category	
picture	 Image	URL	
permalink_url	 Web	URL	
city	 City	
country	 Country/Region	
latitude	 Latitude	
longitude	 Longitude	
	
			
	

Figure	01-22:	Modeling	Data	Category	in	Power	BI	Desktop	
Now	 let’s	 start	 the	 visualization	 to	 see	 the	 photos	 that	 have	 been	 taken	 on
particular	country	or	city	 that	you	have	visited	and	check	In	on	Facebook.	For
this	 select	ArcGIS	Maps	 from	Visualizations	 section	 then	 select	 the	picture	 in
Size	,	place.location.city	field	into	Location	and	place.location.country	into	the
Color	section.	

Figure	01-23:	ArcGIS	Maps	Visualization	in	Power	BI	Desktop	

Further	select	another	Matrix	Visualization	tab	where	you	select	the	Picture	field
in	columns	and	place.location.city	 field	 in	Values	 then	 it	will	 show	the	Picture
image	and	following	location	where	you	have	taken	that	photo	and	checked-In	in
Facebook.	

Figure	01-24:	ArcGIS	Maps	Visualization	and	Photos	Image	in	Power	BI
Desktop	
From	 this	 Visualization	 analysis,	 you	 can	 easily	 see	 and	 track	 the	 places	 you
have	visited	around	the	world	and	Photos	taken	or	memories	from	the	places	that
you	 have	 visited	 and	 had	 checked-in	 using	 Facebook.	 From	 above	 Map
Visualization,	 I	 can	 clearly	 see	 that	 I	 have	 visited	 countries	 like	 Singapore,
Malaysia	and	Ireland.	We	can	select	particular	city	or	location	and	see	selected
pictures	that	we	had	posted	during	visit	in	that	place.	Below	are	some	photos	that
I	 have	 posted	 while	 visiting	 the	 amazing	 city	 of	 Dublin.	 Quite	 good	 old
memories.	

Figure	01-25:	Country	level	filter	Photos	Image	in	Power	BI	Desktop	
	

Figure	01-26:	City	level	Drill	Photos	Image	in	Power	BI	Desktop	
You	 can	 also	 publish	 this	 visualization	 in	 Power	 BI	 Service	 by	 just	 clicking
Publish	button.	You	should	have	account	credentials	 in	 the	Power	BI	Service.	
You	can	learn	more	from	the	link	below:	
https://powerbi.microsoft.com/en-us/

https://powerbi.microsoft.com/en-us/

Figure	01-27:	City	level	Drill	Photos	Dashboard	in	Power	BI	Service	

Summary
Power	Query	along	with	Power	BI	can	actually	tell	us	a	story	about	you	by	using
your	 Facebook	 data.	 I	 was	 happy	 to	 find	 out	 about	 the	 days	 I	 have	 spent	 on
Facebook,	the	photo	memories,	and	the	places	that	I	have	visited.	It	also	reminds
me	of	my	past	college	life.	
This	 is	such	a	cool	 tool,	Power	Query	along	with	Power	BI.	You	can	visualize
the	things	you	just	want	to	see.	
	

About	the	Author
	

Anil	 Maharjan	 is	 a	 Microsoft	 Data	 Platform	MVP,	 has	 more	 than	 8	 years	 of
development	 &	 implementation	 experience	 in	 HealthCare	 Data	 Analytics,
Telecommunication	Industry	as	a	BI	Developer,	Database	consultant	and	Senior
BI	 Engineer.	 He	 is	 a	 frequent	 blogger	 and	 speaker	 at	 local	 SQL	 Server	 User
groups,	 Power	 BI	 User	 Group,	 SQL	 Saturday,	 Data	 and	 BI	 Summit	 2018	 –
Dublin,	Microsoft	Ignite	Singapore	-	2019	and	other	SQL	and	Power	BI	Events.
He	is	also	an	organizing	member	at	the	Himalayan	SQL	Server	User	Group	and
a	User	Group	Leader	of	 the	Nepal	Power	BI	User	Group.	Anil	was	a	Program
Committee	member	for	PASS	Summit	2014,	DATA	and	BI	Summit	2018-Dublin
and	Committee	Track	Leader	for	Power	Platform	Summit	-2019	Australia.	
	
Professional	Blogging	site:	
http://anilmaharjanonbi.wordpress.com
http://maharjananil.com.np

http://anilmaharjanonbi.wordpress.com
http://maharjananil.com.np

Chapter	2:	Get	Data	from	Multiple	URLs	Using	Web	By
Example
	
Author:	Indira	Bandari
In	this	chapter,	there	will	be	detailed	steps	that	show	you	how	to	extract	data
from	a	web	page	that	does	not	have	a	table	that	is	shown	straight	away	in	the
web	connector.
Further,	this	chapter	also	covers	how	to	get	data	from	multiple	webpages	that
have	similar	structures	and	will	demonstrate	the	usage	of	parameters	and
functions.
The	process	will	be	described	under	three	stages:

1.	 Get	Data	from	Web	By	Example	from	a	single	webpage
2.	 Create	a	Table
3.	 Create	a	Parameter	and	Function	Get	data	from	Multiple	URLs.

Get	Data	from	Web	By	Example	from	a	Single	Web	Page
	
The	example	depicted	here	is	to	visualise	some	of	the	RADACAD	blog	articles
that	are	of	interest	in	Power	BI.
Consider	the	URL	AI	Builder	–	AI	Embedded	in	Power	Apps	Part	2		if	we
browse	to	that	URL	we	will	see	its	contents	as	shown	below.

Figure	02-01:	Blog	URL
We	will	use	Power	BI	import	features	to	import	the	following	columns:	Title,
Content,	Posted	By,	Posted	On,	Categories	etc.
Below	is	a	step	by	step	guide	to	import	the	above	data.
Step	1:		Open	Power	BI	Desktop	and	click	on	the	Get	Data	and	Web	as	shown
below:

https://radacad.com/blog
https://radacad.com/ai-builder-ai-embedded-in-power-apps-part-2

Figure	02-02:	Get	data	from	web	button
Step	2:		Enter	the	above	URL	that	you	have	copied	into	the	text	box	as	shown
below.	Since	there	is	no	login	required	to	view	the	blog	articles,	choose	Basic
and	click	OK.

Figure	02-03:	Get	data	from	web	--	provide	URL
Step	3:		The	Navigator	window	is	shown.		If	you	observe	closely,	there	is	a
Document	that	appears	in	the	Display	Options	section	on	the	left	just	below	the
link	provided.		When	you	click	on	the	Document,	the	Table	View	on	the	Right
side	displays	four	columns	–	Kind,	Name,	Children	and	Text.		This	is	of	little	use
because	you	cannot	easily	get	the	information	you	want	from	the	page.

If	you	move	down	to	the	bottom	left	corner	of	the	page,	there	you	see	a	button
named	‘Add	table	using	examples’.		Click	on	that	button	(highlighted).

Figure	02-04:	Add	table	using	examples
Step	4:		This	takes	you	to	the	preview	of	the	web	page	as	shown	below.		The
below	image	consists	of	two	sections.		One	is	the	preview	of	the	web	page	and
the	second	section	has	one	column	with	the	name	as	Column1	as	shown	below.	
The	web	view	might	take	a	few	seconds	to	load	depending	on	your	Internet
connection	as	well	as	the	amount	of	content	on	the	page.		Scroll	to	the	content
that	you	want	to	include	from	the	first	half	of	the	section.

Figure	02-05:	Add	Column1
Step	5:		Click	on	the	first	cell	of	the	Column	titled	Column1.		Start	typing	the

title	of	the	blog	and	choose	from	the	list	displayed.

Figure	02-06:	Choose	Column1	from	list
Step	6:		Click	on	the	grey	area	beside	the	first	cell	of	the	Column	titled
Column1.

Figure	02-07:	Click	for	Column2
Step	7:		That	will	create	a	new	column	titled	Column	2.

	

Figure	02-08:	Add	Column2
	Step	8:		Start	typing	the	author	as	Leila	and	choose	from	the	list	displayed.
	

Figure	02-09:	Choose	Column2	from	list
Step	9:		Again,	click	on	the	grey	area	beside	the	first	cell	of	the	Column	titled
Column2	and	this	will	create	another	column	titled	Column3.

Figure	02-10:	Add	Column3
Step	10:		Start	typing	the	date	as	Jul	2	and	choose	from	the	prompt.	

Figure	02-11:	Column3	Error
This	error	means	that	the	data	typed	in,	cannot	be	recognised	automatically	as
there	is	No	CSS	selector	defined	for	the	date.		Therefore,	choose	what	you	can
see	from	the	list,	which	is	on	Jul	2,	2019.		Then	the	error	is	rectified.

Figure	02-12:	Choose	Column3	from	list

Step	12:		Create	the	rest	of	the	columns	Category,	Comments	and	Content	in	a
similar	way.

Figure	02-13:	Populate	remaining	columns
Step	13:		After	you	are	happy	with	the	columns,	rename	the	columns	as	shown
above	and	click	OK.		Once	you	click	OK,	you	will	be	taken	to	the	screen
(below).		Make	sure	that	you	click	the	‘Table	1’	that	is	newly	created	at	the
bottom	left	corner	of	the	Navigation	pane	as	highlighted	below.		Check
everything	is	ok	and	click	Load.

Figure	02-14:	Add	table	from	example	Navigation	Pane
Step	14:		You	will	be	taken	to	the	below	screen.		Rename	the	Table	as	‘Base
Query’	as	highlighted	below.

Figure	02-15:	Base	Query	Table
That	completes	the	first	stage.	

Create	a	Table
The	next	stage	is	to	get	data	from	the	other	blog	articles	that	are	of	interest.		For
example,	below	is	a	list	of	URLs	that	are	of	interest	to	us	to	get	into	Power	BI:
https://radacad.com/ai-builder-power-apps-embed-with-ai-part-1
https://radacad.com/ai-builder-ai-embedded-in-power-apps-part-2
https://radacad.com/power-bi-shared-datasets-what-is-it-how-does-it-work-and-
why-should-you-care
https://radacad.com/automated-machine-learning-data-profiling-in-azure-ml-
services-part-4
https://radacad.com/azure-machine-learning-services-deploy-automl-model-and-
use-it-in-power-bi-part-3
https://radacad.com/budget-vs-actual-zero-complexity-model-in-power-bi
To	do	this,	a	table	needs	to	be	created	where	these	URLs	will	be	included	in	a
column.		Click	on	the	‘Enter	Data’	button	in	the	Power	Query	Editor	as	shown
below:

Figure	02-16:	‘Enter	Data’	button	in	Power	Query
The	below	screen	appears:

https://radacad.com/ai-builder-power-apps-embed-with-ai-part-1
https://radacad.com/ai-builder-ai-embedded-in-power-apps-part-2
https://radacad.com/power-bi-shared-datasets-what-is-it-how-does-it-work-and-why-should-you-care
https://radacad.com/automated-machine-learning-data-profiling-in-azure-ml-services-part-4
https://radacad.com/azure-machine-learning-services-deploy-automl-model-and-use-it-in-power-bi-part-3
https://radacad.com/budget-vs-actual-zero-complexity-model-in-power-bi

Figure	02-17:	Create	Table
Copy	the	URLs	above	and	paste	them	in	the	first	cell	of	the	column.

Figure	02-18:	Populate	Column1	with	URLs
The	above	screen	shows	that	the	first	row	of	data	has	been	promoted	to	header.	
Click	on	‘Undo	Headers’	button.		Rename	the	column	to	URL	as	shown	below.

Figure	02-19:	Rename	Column	Header
Rename	the	table	as	well	to	something	meaningful	(let’s	say	URLs).		Click	OK.	
Now	the	table	of	URLs	is	ready.

Create	a	Parameter	and	a	Function	to	get	Data	from	Multiple	Web
Pages
	

1.		Create	a	Parameter
	
In	this	stage,	we	will	look	at	creating	a	parameter	and	a	function.	
To	create	a	parameter,	click	on	‘Manage	Parameters	–	New	Parameter’	from	the
Home	Ribbon:

Figure	02-20:	‘Create	New	Parameter’	button
The	screen	below	appears.		Change	the	name	of	the	new	parameter	to
“myblogurl”,	as	well	as	the	Type	to	Text	and	in	the	‘Current	Value’	field	paste
URL	https://radacad.com/ai-builder-ai-embedded-in-power-apps-part-2.

https://radacad.com/ai-builder-ai-embedded-in-power-apps-part-2

Figure	02-21:	Parameters	screen
Now	the	parameter	is	created.		It	looks	as	follows:

Figure	02-22:	myblogurl	Parameter	created
	

2.		Create	a	Function
The	next	task	is	to	create	a	function.		Below	are	the	steps	to	create	a	function.	
Step	1:		In	the	Power	Query	Editor,	click	on	the	query	you	have	created	in	the
first	stage	named	‘Base	Query’.		Then,	click	on	‘Advance	Editor’:

Figure	02-23:	Advanced	Editor	button	from	Base	Query
The	below	screen	pops	up.		Look	at	the	URL	in	the	highlighted	section:

Figure	02-24:	Advanced	Editor	with	the	actual	URL
	
Step	2:		Replace	the	URL	including	the	quotation	marks	with	the	name	of	the
parameter	(myblogurl)	as	shown	below.		Make	sure	that	there	are	no	syntax
errors	as	highlighted	in	the	bottom	left	corner	of	the	image	shown	below.

Figure	02-25:	Advanced	Editor	with	the	parameter
Step	3:		Click	OK.		Now	right	click	on	the	‘Base	Query’	and	click	on	‘Create
Function’.

Figure	02-26:	Create	Function	button
Step	4:		The	screen	below	pops	up.		Give	a	name	to	the	function	‘fnmyblogurl’.

Figure	02-27:	Create	Function	screen

Step	5:		Click	OK.		The	created	function	should	look	as	follows:

Figure	02-28:	Function	created
Now	you	can	test	the	function	by	copying	the	URL	https://radacad.com/ai-
builder-ai-embedded-in-power-apps-part-2	in	the	text	box	highlighted	above	and
clicking	Invoke.		It	should	generate	the	following	data:

Figure	02-29:	Invoked	function
Now	that	your	function	is	created,	you	can	proceed	to	the	next	stage	of	getting
the	data	from	multiple	URLs.

3.		Get	Data	from	Multiple	Web	Pages
In	order	get	data	from	the	multiple	URLs,	click	on	the	table	that	was	created,
naming	it	as	‘URLs’.

https://radacad.com/ai-builder-ai-embedded-in-power-apps-part-2

Figure	02-30:	URLs	table	with	URL	column
Now	we	will	used	the	created	function	to	create	a	new	column	that	contains	the
data	for	the	URLs	in	the	URL	column.		To	do	this	click	on	the	‘Add	Column’	tab
in	the	ribbon	and	click	on	‘Invoke	Custom	Function’.

Figure	02-31:	Add	Column	using	Invoke	Custom	Function
The	following	dialog	appears.		Change	the	column	name	to	‘blogdetails’.	
Choose	the	function	query	from	the	dropdown	to	fnmyblogurl.		In	the	myblogurl
dropdown,	choose	the	field	URL	from	the	URLs	table.		In	most	cases	it
automatically	takes	that	field	if	that	is	the	only	field	in	the	table.

Figure	02-32:	Invoke	Custom	Function	dialog
Click	OK.		Now,	there	is	a	new	column	in	the	table	URLs.

Figure	02-33:	New	column	in	URLs	table
As	you	can	see	there	is	a	Table	link.		You	can	expand	the	blog	details	column	by
clicking	on	the	expand	button	as	highlighted	in	red	(above).		The	following
dialog	appears.

Figure	02-34:	Expand	button
Make	sure	that	the	check	box	named	‘Use	original	column	name	as	prefix’	is
unticked.		Click	OK.
Now	the	URLs	table	is	populated	with	all	the	columns	–	Title,	Date,	Author,
Categories,	Comments	and	Content	for	each	of	the	URLs	you	specified.

Figure	02-35:	URLs	table	with	gaps
Did	you	notice	the	highlighted	parts	being	blank?	
This	can	also	be	fixed.		The	following	are	the	steps	to	obtain	all	of	the	details.
Go	back	to	the	Base	Query	in	the	Power	Query	Editor.			On	the	right	side	in	the
‘Applied	Steps’	section,	click	on	the	wheel	icon	beside	the	‘Extract	Table’	from
the	HTML	step	as	highlighted	below.

Figure	02-36:	Extracted	Table	from	HTML	--	settings
The	below	screen	pops	up.		In	the	Author	field,	instead	of	typing	as	just	‘Leila
Etaati’,	type	it	as	shown	below:
	

Figure	02-37:	Repopulate	Author	column
Similarly,	in	the	Comments	field,	instead	of	just	typing	‘No	Comments’,	choose
‘|	No	Comments’	as	shown	below:

Figure	02-38:	Repopulate	Comments	column
Click	OK.
Now	check	the	URLs	table.		The	details	for	all	the	columns	are	filled	in	as
displayed.		In	this	way,	you	can	just	change	the	‘Base	Query’	and	get	the	changes
as	reflected.

Figure	02-39:	URLs	Table	with	Full	Details
	
	

Summary
Power	Query	is	a	pretty	powerful	tool	you	can	use	to	extract	data	from	Web	as
described	in	this	chapter.		There	are	other	scenarios	you	can	use	to	scrape	data
off	the	web	and	analyse	in	Power	BI.
Happy	Data	Scraping!
	

About	the	Author

Indira	Bandari	Data	Platform	MVP
Indira	is	a	Business	Intelligence	Consultant	and	an	aspiring	Data	Scientist	with
over	15	years	of	experience	in	designing	and	developing	data	warehouses	and
analytical	solutions.		She	has	been	awarded	is	a	Microsoft	Data	Platform	MVP	in
New	Zealand.		She	has	a	Masters	degree	in	Statistics	and	is	passionate	about
data,	analytics	and	learning	data	science.	
Volunteering	and	sharing	her	knowledge	are	her	passions.		In	her	pastime,	she
teaches	game	development	for	primary	school	children.		She	also	teaches
database	concepts	and	data	visualizations	to	10-15-year-olds.
She	is	a	co-organiser	for	NZ	Power	BI	User	Group,	Auckland	AI	Meetup	Group
and	SQL	Saturday	Auckland.		She	is	a	speaker	at	various	User	Groups,	Virtual
Webinars,	PASS	Marathon,	24	Hours	of	PASS	and	SQL	Saturdays	in	New
Zealand	and	the	Power	Platform	Summit	in	Australia.
	

Chapter	3:	One	URL,	Many	Tables
	
Author:	Liam	Bastick
Chapter	abstract:	This	chapter	considers	how	to	import	a	multiple	page	table	into
Power	Query	where	the	URL	does	not	appear	to	change.		The	approach	was	a
true	team	effort	–	and	although	not	pretty,	it’s	a	very	useful	technique!
Here’s	a	rather	awkward	–	yet	common	–	problem.		Consider	the	data	from	the
following	website	http://www.quanthockey.com/khl/seasons/2017-18-khl-
players-stats.html:

Figure	03-01:	Example	Data
The	webpage	is	nicely	set	out	and	contains	a	table	of	hockey	player	statistics.	
The	thing	is,	the	embedded	table	actually	has	17	pages	of	data	and	let’s	say	we
wish	to	extract	all	of	this	data	for	analysis	elsewhere.
There’s	a	problem	though.		When	you	click	on	the	second	or	subsequent	page	of
data,	the	URL	for	the	website	does	not	change.		This	seemingly	defeats	Power
Query	(or	Power	BI)	as	URLs	for	each	page	of	table	data	are	required.
So	how	may	we	extract	all	of	the	data?		To	answer	this,	let’s	get	there	in	five
steps.

http://www.quanthockey.com/khl/seasons/2017-18-khl-players-stats.html

Part	1:	Manual	Retrieval	of	Data
Now	I	know	most	of	this	book	is	on	Power	BI,	but	I	like	to	present	general
solutions	where	possible.		Power	Query	–	in	its	guise	as	‘Get	&	Transform’	–	is
available	in	both	Excel	and	Power	BI.		Therefore,	to	show	its	versatility	(and	to
be	different!),	please	allow	me	to	demonstrate	this	using	Excel.		Power	BI	works
just	as	well	–	and	very	similarly	too.
To	manually	import	the	data	from	this	example	website	using	Power	Query,	first
open	Excel,	navigate	to	the	‘Data’	tab	and	click	on	the	‘New	Query’	option,
select	the	‘Other	Sources’	option	followed	by	‘Web’,	viz.

	

Figure	03-02:	New	Query
A	dialog	box	will	appear,	allowing	us	to	insert	the	URL.		Next,	click	‘OK’:

Figure	03-03:	From	Web	Dialog
The	‘Navigator’	dialog	box	will	appear,	allowing	us	to	select	exactly	which	table
to	pull	data	from.		At	this	point	all	looks	good,	however	we	should	name	the
table,	so	click	on	‘Edit’:

Figure	03-04:	Navigator	Dialog
In	the	‘Query	Editor’	dialog,	we	should	give	our	query	a	friendly	name,	let’s	say
‘HockeyData’,	then	select	‘Close	&	Load’:

Figure	03-05:	HockeyData
We	can	see	that	Power	Query	was	only	able	to	retrieve	the	first	50	entries:

Figure	03-06:	First	50	Entries	Only
This	is	because	Power	Query	retrieves	data	based	on	the	URL,	and	in	this	case
our	Power	Query	friendly	hockey	statistics	website	displays	data	using
JavaScript	to	dynamically	refresh	the	list	of	players.		This	enables	the	webpage
to	dynamically	refresh	the	player	list	in	one	page,	without	changing	the
webpages’	URL.		Additionally,	there’s	another	problem:	we	also	do	not	know
how	many	pages	of	data	this	website	has.
Therefore,	to	summarize,	we	have	three	key	issues:
1. We	are	unable	to	manually	pull	all	data	from	the	website
2. We	do	not	know	how	many	pages	of	data	the	website	has	(and	this	may
change	over	time)
3. The	webpage	does	not	change	its	URL	when	a	new	page	of	data	is
displayed.

Let’s	deal	with	them	systematically.

Part	2:	Custom	Functions
Turning	to	the	first	issue	identified,	it’s	been	noted	that	we	are	unable	to
manually	retrieve	all	of	the	data	just	by	importing	it	into	Power	Query.		Several
of	us	worked	together	collaboratively	and	the	solution	proposed	and	provided
here	was	by	Reza	Rad	utilising	custom	functions	in	Power	Query.	
A	custom	function	is	a	query	that	is	run	by	other	queries.		For	those	of	you	who
know	JavaScript,	it	is	similar	to	what	is	known	as	an	Object	Method.		The
benefit	of	having	a	custom	function	is	that	we	can	repeat	the	same	number	of
steps	again	and	again.
Let’s	work	through	a	simple	example	to	illustrate	a	custom	function’s	utility.		For
instance,	we	wish	to	retrieve	the	gross	earnings	of	all	of	the	movies	that	were
released	in	that	year,	along	with	their	current	rank	and	their	studio	(referring	to
the	website	http://www.boxofficemojo.com/yearly/chart/?yr=2017&p=.htm).		It
does	not	matter	which	year	we	wish	to	begin	with,	so	for	this	example	we	shall
begin	with	2017.	
To	launch	Power	Query	/	Get	&	Transform,	launch	Excel	and	head	to	the	‘Data’
tab	and	select	‘New	Query’	--	‘Other	Sources’	–	‘Web’	again.		Using	the	default
options,	paste	in	the	URL	and	click	‘OK’.

	Figure	03-07:	From	Web	Dialog	(again)
In	the	ensuing	dialog,	select	‘Table	1’	(as	this	is	the	data)	and	then	click	on
‘Edit’:

http://www.boxofficemojo.com/yearly/chart/?yr=2017&p=.htm

Figure	03-08:	Editing	Table	1
Now	that	we	have	the	‘Query	Editor’	window	open,	we	can	define	our
parameter.		Parameters	are	needed	for	custom	functions	to	work.

Figure	03-09:	Creating	a	New	Parameter
We	create	a	simple	parameter,	set	the	name	to	‘Year’	type	to	‘text’	and	the	initial
value	to	2017:

Figure	03-10:	Parameters	Dialog
We	can	now	add	a	custom	column.		Click	on	‘Table	1’,	then	on	the	‘Add
Column’	tab	and	then	‘Custom	Column’:

Figure	03-11:	Custom	Column
We	give	the	custom	column	a	name	‘Year’	and	make	it	equal	to	the	parameter
‘Year’.

	Figure	03-12:	Creating	the	Parameter	‘Year’
Be	sure	to	change	the	custom	column’s	data	type	to	‘Text’	too:

Figure	03-13:	Making	the	‘Year’	Data	Type	Text
The	next	step	is	to	integrate	our	parameter	into	the	URL.		This	allows	us	to
dynamically	change	the	URL,	ultimately	altering	the	source	of	the	database	on
the	desired	year.		Therefore,	with	‘Table	1’	selected,	click	on	the	setting	icon	for
the	‘Source’	step	in	the	‘Applied	Steps’	section:

Figure	03-14:	Applied	Steps
Now	let’s	select	the	‘Advanced’	option.		Identify	the	part	of	the	URL	that	has	the

date,	and	enter	the	parameter	in	its	place.		We	should	also	include	the	last
element	of	the	URL	after	the	‘Year’	parameter.		We	do	this	by	adding	to	the	URL
with	some	copy	and	paste	work.

Figure	03-15:	Modifying	the	URL
Once	that	is	done	click	‘OK’.		We	now	have	to	convert	the	query	into	a
function.		Right	click	on	the	‘Table	1’	query	then	select	‘Create	Function…’:

	Figure	03-16:	Creating	a	Function
Name	the	function	‘GetMovies’	then	click	‘OK’.

	Figure	03-17:	Naming	the	Function
There	is	now	a	group	folder	containing	the	original	‘Table	1’	query,	the	Year
2017	parameter,	and	the	‘GetMovies’	function.

Figure	03-18:	Noting	the	Three	Queries
We	have	created	a	copy	of	the	Table	1	query	and	called	it	‘GetMovies’.		From
now	on,	every	time	we	call	on	‘GetMovies’,	Power	Query	will	perform	the	same
tasks	in	that	defined	order.
For	simplicity,	we	will	create	a	simple	generator.		We	will	use	the	List.Numbers
function	to	create	our	generator.		To	do	this,	simply	create	a	new	query	by
navigating	to	the	‘Data’	tab,	‘New	Query’,	‘From	Other	Sources’	and	choose
‘Blank	Query’.		Then	enter	the	following	formula	in	the	formula	bar:
=List.Numbers(2002,16)
and	hit	ENTER.

	Figure	03-19:	List.Numbers
This	creates	a	list,	which	only	has	limited	flexibility	and	use.		Tables	are	much
more	flexible.		We	can	convert	the	list	into	a	table	using	the	‘To	Table’	option
located	in	the	‘Convert’	group	as	shown:

Figure	03-20:	Convert	to	Table
The	default	conversion	settings	will	suffice.		Lastly,	change	the	data	type	to
‘Text’.

	Figure	03-21:	Data	Type	Text
With	the	‘Query1’	query	selected,	invoke	a	custom	function	by	going	to	the	‘Add
Column’	tab	and	select	the	‘Invoke	Custom	Function’	in	the	‘General’	group:

Figure	03-22:	Invoke	Custom	Function
After	naming	the	new	column	to	‘GetMovieData’,	select	the	‘GetMovies’
function	and	click	‘OK’:
	

Figure	03-23:	Invoke	Custom	Function	Dialog
A	new	column	will	be	added:

	Figure	03-24:	Column	Added
Clicking	on	each	individual	Table	line	item	will	drill	into	the	movie	data	for	its
corresponding	year	(or	you	may	click	on	the	white	space	to	the	right	of	‘Table’	to
show	it	in	preview),	e.g.

	Figure	03-25:	After	Clicking	on	‘Table’	in	2006
There	are	some	limitations	however:
• Editing	the	M	script	of	the	function	will	cause	the	function	and	query	to
collapse
• Custom	functions	cannot	be	scheduled	to	update	in	Power	BI.
This	shouldn’t	detract	from	the	benefits.		Moving	on,	click	on	the	‘Expand’
option	as	shown:

Figure	03-26:	‘Expand’	Option
This	reveals	a	compiled	table	with	the	top	100	movies	for	the	given	year:

	Figure	03-27:	Expanded	Table
The	data	still	needs	some	cleaning	up,	but	that’s	another	story.		This	deals	with
manual	importation	of	the	data.		However,	what	about	the	page	number	issue?	

Part	3:	Unknown	Number	of	Pages
Again,	I	am	not	looking	to	take	credit	for	the	methodology	here	–	I	am	just	the
one	that	put	it	all	together.		The	solution	to	this	part	of	the	problem	was	produced
by	a	combined	effort	of	ideas	from	Matt	Mason	and	Miguel	Escobar.
Matt	Mason’s	method	adopts	a	brute	force	method	to	dealing	with	an	unknown
number	of	pages	where	it	instructs	Power	Query	to	run	through	pages	1	to	a
given	number	(say,	10,000)	but	to	stop	when	Power	Query	runs	into	an	error	or	a
‘null’	value.		He	points	out	that	if	this	method	is	used	together	with	a	third-party
software	such	as	Fiddler	(more	on	Fiddler	later),	Power	Query	will	be	found
trying	to	evaluate	all	10,000	pages.		Furthermore,	if	you	try	Matt’s	method	now
with	newer	versions	of	Power	Query,	you	will	receive	an	error	claiming	that	you
do	not	have	access	to	the	database.		We	need	to	modify	this	method!
This	is	where	Miguel	comes	in	and	adjusts	the	code	a	little	so	that	it	does	not
adopt	the	brute	force	method	anymore	as	well	as	fix	this	permissions	bug	in
Power	Query.
Building	up	from	Matt	Mason’s	model,	we	will	only	utilise	his	‘GetData’
function.		Open	Power	Query	from	Excel	and	we’ll	turn	Matt’s	‘GetData’	idea
into	a	function:

Figure	03-28:	GetData	Query
If	you	can’t	read	it,	don’t	worry!		Let’s	go	through	the	code	line	by	line.
Now	we	create	a	whole	new	Query,	using	a	‘Blank	Query’.		The	first	line	of
code	to	be	entered	is	the	List.Generate	function:
=List.Generate(()=>
The	()=>	function	nomenclature	essentially	says	that	we	will	define	a	function
with	no	parameter.

	Figure	03-29:	Building	Up	the	Code	#1
The	next	line	is:
[Result=	try	GetData(1)	otherwise	null,	Page	=	1],
This	line	says	try	to	GetData,	but	if	it	returns	an	error,	return	‘null’	in	Page	1:

	Figure	03-30:	Building	Up	the	Code	#2
The	next	line:
each	[Result]	<>	null,
specifies	a	condition,	where	the	result	cannot	be	null	or	perform	this	function	as
long	as	the	Result	is	not	equal	to	null.

Figure	03-31:	Building	Up	the	Code	#3
The	next	line	increments	the	page	to	page	2:
each	[Result	=	try	GetData([Page]+1)	otherwise	null,	Page	=	[Page]+1],

	Figure	03-32:	Building	Up	the	Code	#4
The	last	line	in	this	function	instructs	Power	Query	to	display	the	Result	field:
each	[Result])
Once	we	hit	ENTER,	we	will	see	the	list	of	tables:

	Figure	03-33:	Building	Up	the	Code	#5
This	is	all	of	the	different	pages	pulled	of	the	domestic	gross	of	2016	from	the
Box	Office	Mojo	website.		Notice	that	Power	Query	does	not	try	to	evaluate
10,000	pages!
Now	we	go	through	the	table	and	define	each	column’s	data	type.		While	this	is
still	a	list,	we	can	transform	this	into	a	table	and	expand	the	data:

Figure	03-34:	Transform	to	Table
Once	the	table	has	been	transformed,	we	can	expand	the	table:

	Figure	03-35:	Expand	the	Table
The	expanded	table	should	look	something	like	this:

	Figure	03-36:	Expanded	Table
Closing	and	loading	will	not	result	in	an	error	but	instead	all	of	the	movie	data
from	the	year	of	2016	from	the	Box	Office	Mojo	website:

	Figure	03-37:	All	Movie	Data
Now	that	we	have	dealt	with	the	page	number	issue,	let’s	move	on…

Part	4:	Fiddling	with	the	URL
Next,	let’s	head	over	to	Telerik’s	software	page	(https://www.telerik.com/fiddler)
to	download	Fiddler.		This	software	will	help	us	with	this	stage	as	it	allows	web
session	manipulation.		When	Windows	has	finished	installing	Fiddler,	you
should	see	something	like	this:

	Figure	03-38:	Fiddler
As	the	prompt	‘Please	select	a	single	Web	Session	to	impact’	suggests,	we	will
open	a	window	in	the	browser.		Go	ahead	and	navigate	to	the	Hockey	statistics
website	again	(http://www.quanthockey.com/khl/seasons/2017-18-khl-players-
stats.html)	and	we	will	start	to	see	some	interesting	things	appear	on	Fiddler:

	Figure	03-39:	Fiddler	Analysis	1
Fiddler	takes	the	source	of	the	URL	and	displays	is	it	here.		Let’s	see	what
happens	when	we	select	page	2	of	the	Hockey	Stats.		Fiddler	now	returns	with	an

https://www.telerik.com/fiddler
http://www.quanthockey.com/khl/seasons/2017-18-khl-players-stats.html

alternate	URL:

Figure	03-40:	Fiddler	Analysis	2
It	seems	to	have	been	broken	down	into	Seasons,	and	potentially	pages.		Let’s
copy	it	and	save	it	to	an	Excel	spreadsheet	to	aid	us	in	discovering	any	patterns.	
Right	click	the	line	of	URL	and	select	‘Copy	just	URL’.

Figure	03-41:	Copy	Just	URL
After	repeating	the	process,	a	couple	of	times,	we	spot	a	pattern.	Fiddler	is	able
to	retrieve	the	URL	and	break	it	down	into	pages!		Therefore,	we	can	finally	use
this	to	work	with	Power	Query!

Figure	03-42:	Spotting	a	Pattern
Now	for	the	final	part	where	we	combine	everything	together.

Part	5:	Putting	it	All	Together
The	first	step	is	to	create	a	new	query	in	Power	Query	and	create	a	new
parameter:

Figure	03-43:	Manage	Parameters
Let’s	name	the	parameter	PageNumber,	set	it	to	a	‘Decimal	Number’	type,	and
give	it	a	current	value	of	1:

Figure	03-44:	Parameters	Dialog
Now	create	a	new	‘Blank	Query’	and	paste	the	following	(from	before)	into	the
formula	bar:
Source	=
Web.Page(Web.Contents("http://boxofficemojo.com/yearly/chart/?page="
&	Number.ToText(page)	&
"&view=releasedate&view2=domestic&yr=2013&p=.htm")),
Then	modify	it	using	the	new	URL	provided	from	Fiddler:

=Web.Page(Web.Contents("http://www.quanthockey.com/scripts/AjaxPaginate.php?
cat=Season&pos=Players&SS=2017-18&af=0&nat=2017-
18&st=reg&sort=P&so=DESC&page=2&league=KHL&lang=en&rnd=167379793&dt=1"))
We	also	have	to	include	the	PageNumber	parameter	and	the	Text.From	Power
Query	function	to	ensure	that	it	is	inserted	into	the	URL	as	a	text	format.		The
following	code	should	replace	the	page	number	(where	the	ampersand	symbols
mean	concatenate	or	‘join	together’):
="&Text.From(PageNumber)&"
yielding	this:
=Web.Page(Web.Contents("http://www.quanthockey.com/scripts/AjaxPaginate.php?
cat=Season&pos=Players&SS=2017-18&af=0&nat=2017-
18&st=reg&sort=P&so=DESC&page="&Text.From(PageNumber)&"&league=KHL&lang=en&rnd=276273473&dt=1"))

Figure	03-45:	Example	Code
As	you	can	see,	the	PageNumber	parameter	has	been	linked	into	the	URL.		Hit
ENTER	and	Power	Query	will	return	with	a	condensed	table.		The	next	step	is
to	select	the	top	right	‘Table’	option:

Figure	03-46:	Selecting	the	Table	Option
This	will	expand	the	table	resulting	in	a	table	that	only	imports	data	from	the
first	page,	or	the	first	50	records:

	Figure	03-47:	Table	with	Up	to	First	50	Records
Create	a	new	blank	query	and	copy	this	code	in.		It	is	a	modified	version	of	the
GetData	function:
=	(PageNumber	as	number)	=>	let

								Source	=
Web.Page(Web.Contents("http://www.quanthockey.com/scripts/AjaxPaginate.php?
cat=Season&pos=Players&SS=2017-18&af=0&nat=2017-
18&st=reg&sort=P&so=DESC&page="&Text.From(PageNumber)&"&league=KHL&lang=en&rnd=276273473&dt=1")),
								Data0	=	Source{0}[Data],
								#"Changed	Type"	=	Table.TransformColumnTypes(Data0,{{"Rk",
Int64.Type},	{"",	type	text},	{"Name",	type	text},	{"Age",	Int64.Type},
{"Pos",	type	text},	{"GP",	Int64.Type},	{"G",	Int64.Type},	{"A",
Int64.Type},	{"P",	Int64.Type},	{"PIM",	Int64.Type},	{"+/-",	Int64.Type},
{"PPG",	Int64.Type},	{"SHG",	Int64.Type},	{"GWG",	Int64.Type},
{"G/GP",	type	number},	{"A/GP",	type	number},	{"P/GP",	type	number}})
				in
								#"Changed	Type"
The	second	section	of	code	simply	changes	the	data	types	accordingly	for	each
column	so	that	you	don’t	have	to	do	it!
Hit	ENTER	and	rename	the	function	to	PageData:

Figure	03-48:	PageData	Function
Now,	create	another	blank	query	and	copy	this	code	in	(again,	from	before):
=	List.Generate(()=>
[Result=	try	PageData(1)	otherwise	null,	Page	=	1],
				each	[Result]	<>	null,
				each	[Result=		try	PageData(Page)	otherwise	null,	Page	=	[Page]	+1],
				each	[Result])
Hit	ENTER	and	change	the	name	of	the	Query	to	AllData:

	Figure	03-49:	AllData
This	time	there	are	no	modifications!		We	just	need	to	convert	this	list	into	a
table:

	Figure	03-50:	Convert	to	Table
Once	Power	Query	has	converted	it	into	a	table,	we	can	expand	the	table:

Figure	03-51:	Expand	to	Table	(Again)
Expanding	the	table	should	yield	this	result,	where	Power	Query	is	able	to
compile	the	entire	list	of	Hockey	players,	not	just	the	first	50:

	Figure	03-52:	Complete	Table
We	can	now	proceed	to	‘Close	&	Load’.

	Figure	03-53:	Close	&	Load
There	you	have	it,	all	829	Hockey	Player	stats	(as	at	the	time	of	writing)	in	one
worksheet!

	Figure	03-54:	Complete	Table	in	Excel
Hopefully,	Microsoft	will	introduce	a	new	built	in	feature	to	circumvent	all	this
nasty	coding,	but	in	the	meantime…

About	the	Author

Dr.	Liam	Bastick	FCA	FCMA	MVP
Liam	has	over	30	years’	experience	in	financial	model	development	/	auditing,
valuations,	M&A,	strategy,	training	and	consultancy.		He	is	a	Director	in	the
Melbourne	office	of	SumProduct,	having	previously	run	several	other	modelling
consultancies.
An	experienced	accountant	and	a	professional	mathematician,	Liam	has	worked
around	the	world	with	many	internationally	recognised	clients.		He	has	been
awarded	Microsoft’s	Most	Valuable	Professional	(MVP)	award	nine	times	for	his
expertise	in	Excel	and	financial	modelling.		He	writes	in	various	accounting
magazines	around	the	world	and	is	author	of	An	Introduction	to	Financial
Modelling.
Check	out	free	downloads,	online	training	and	Excel	/	Power	BI	articles	at
www.sumproduct.com.
	

http://www.sumproduct.com

Part	II:	Data	Preparation

Chapter	4:	Creating	Calendar	Dimensions	with	Power
Query
	
Author:	Ken	Puls,	FCPA,	FCMA
In	this	chapter	we’ll	look	at	how	to	create	a	dynamic	calendar	on	the	fly,	then
populate	it	with	columns	for	the	date	formats	you	may	need	for	your	model.	
Whether	you	are	building	a	standard	12-month	calendar,	a	12-month	calendar
with	a	non-standard	year	end,	or	a	calendar	that	follows	a	4-4-5,	4-5-4,	5-4-4
week	setup,	Power	Query	can	create	it	for	you	and	ensure	it	covers	the	entire
date	range	contained	in	your	data.		All	you	need	to	know	is	how…

To	Create	or	not	to	Create?
When	performing	any	type	of	analysis	or	reporting	that	slices	data	by	date,	it	is
important	to	make	sure	that	there	is	a	calendar	dimension	in	your	Power	BI
model.		This	table	is	essential	for	bridging	multiple	fact	tables	with	dates,	and	is
also	important	if	you	plan	to	run	measures	like	TOTALMTD(),	as	a	gap	in	the
date	range	will	cause	the	measure	to	return	incorrect	values.

Dynamic	Calendars	vs	the	Corporate	Database
Let’s	be	honest,	building	a	calendar	on	the	fly	with	Power	Query	sounds	like
work,	and	is	bound	to	take	resources	to	refresh.		You	might	be	asking	whether	it
wouldn’t	be	better	to	just	pull	the	calendar	table	directly	from	the	corporate
database.		The	answer	is	absolutely	yes,	and	in	fact,	doing	so	will	allow	you	to
build	either	Import	or	DirectQuery	Power	BI	models.
Building	a	dynamic	calendar	table	using	the	techniques	in	this	chapter	only
applies	to	an	Import	model.		If	you	have	access	to	the	calendar	from	corporate,
then	you	should	use	it.		But	what	if	you	don’t?		What	if	you’re	served	up	a	diet
of	Excel	or	text	files,	and	don’t	have	access	to	a	calendar	that	is	blessed	by
corporate	IT?		THAT	is	when	the	steps	in	this	chapter	open	things	up	for	you.

Doesn’t	Power	BI	Use	Default	Date	Tables?
While	Microsoft	does	provide	default	date	functionality,	I’ll	admit	that	I’m	not	a
fan	of	it.		Why?		Because	I	don’t	have	ultimate	control	over	what	gets	added	to
my	data	model	and	how.		Using	this	functionality	adds	a	hidden	table	to	your
model	for	every	column	of	each	table	that	contains	date	values.		That	means	that
if	you	have	three	different	tables	with	dates	in	them,	and	you	don’t	declare	a
specific	date	table	properly,	you	get	three	copies	of	a	hidden	date	table	in	your
model.		And	if	one	of	those	tables	contains	a	“StartDate”	and	“EndDate”
column,	you	actually	get	four	hidden	tables,	as	each	column	is	treated
differently!		Each	of	these	hidden	tables	holds	columns	for	Date,	Day,	Month,
MonthNo,	Quarter,	QuarterNo	and	Year	fields,	and	takes	memory	to	store	the
unique	values.		In	addition,	without	being	properly	linked	to	the	other	fact	tables
in	the	models,	they	don’t	offer	you	the	benefit	of	cross	filtering,	as	a	properly
linked	calendar	dimension	table	does.
My	advice?		Turn	the	automatic	date	table	feature	off	and	build	your	calendar
tables	properly.		To	turn	off	this	feature	(both	globally	and	for	the	current	file):
●								Go	to	File	->	Options	and	Settings	->	Options
●								Go	to	Global	->	Data	Load	->	uncheck	‘Auto	date/time	for	new	files’

●								Go	to	Current	File	->	Data	Load	->	Time	intelligence	->	uncheck	‘Auto
date/time’.

Sample	Data
The	sample	data	for	this	chapter	is	built	assuming	we	have	both	a	table	of
Transactions,	and	a	table	of	Budget	values.		They	are	at	a	different	level	of
granularity,	with	transactions	being	recorded	on	a	daily	basis,	and	budgets	being
recorded	on	a	monthly	basis.		The	data	model	(as	it	stands)	looks	like	this:

Figure	04-01:	Sample	data	model
A	sample	of	the	data	is	shown	below:

Figure	04-02:	Sample	data
While	the	data	for	this	sample	is	contained	entirely	in	the	Power	BI	file,	we’ll
pretend	that	the	transactions	have	been	sourced	from	a	text	file	extract,	and	the
budgets	have	been	sourced	from	every	accountant’s	favorite	software:	Excel.	

The	challenge	here	is	that	there	is	no	calendar	table	provided	at	all,	but	we	need
to	have	one	to	act	as	a	bridge	between	our	fact	tables,	as	well	as	provide	the
backbone	for	our	date	intelligence	measures.

Creating	a	Dynamic	Calendar	Table
To	create	a	fully	dynamic	calendar	table,	the	first	thing	we	need	to	figure	out	is
the	start	date	and	the	end	date	for	the	calendar.		Once	we	have	those,	creating	a
complete	calendar	with	a	row	for	each	day	is	actually	very	easy.		The	hard	part	is
figuring	out	where	to	get	the	dates	from.
Start	dates	and	end	dates	can	be	hard	coded	in	parameters,	but	the	challenge	here
is	that	you	need	to	update	them	when	the	data	changes.		Wouldn’t	it	be	better	to
just	extract	the	earliest	and	latest	dates	right	from	the	model	data?		The	trick	is
which	table	to	use	for	which	date.
The	key	for	the	start	date	is	picking	up	the	data	table	that	will	always	contain	a
record	with	the	earliest	date	in	all	of	your	fact	tables.		A	Sales	or	Transactions
table	is	usually	a	good	bet	for	this.		For	the	end	date,	you	may	want	the	Sales
table,	but	Budgets	can	often	be	better	–	at	least	–	Budgets	can	be	better	providing
that	your	company	always	budgets	before	sales	happen.		If	you	don’t,	then
relying	on	your	Sales	table	could	be	the	better	bet.
Regardless	of	the	tables	you	choose,	we’ll	force	the	boundaries	to	always	cover
the	full	fiscal	year(s)	for	which	we	have	data.		As	long	as	we	pick	the	tables	that
will	always	cover	the	full	date	range,	things	will	work	flawlessly.

Recipe	for	StartDate	and	EndDate	Queries
The	dynamic	calendar	all	begins	with	two	queries:		StartDate	and	EndDate.	
We’ll	walk	through	the	process	here	of	creating	the	StartDate	query,	then	show
the	recipe	as	well	as	how	it	compares	to	the	EndDate	query.
To	begin,	we’ll	start	with	the	Sales	table,	as	it	is	the	transactional	table	that	will
always	hold	the	earliest	date.		Since	it	is	sourced	via	Power	Query,	we	can	go	to
Edit	Queries	and	open	the	Power	Query	Editor.		From	there:
●								Right	click	the	Sales	query	in	the	Queries	pane	(at	left)	->	Reference
●								Right	click	the	[Date]	column	->	Remove	Other	Columns
●								Click	the	filter	icon	on	the	top	of	the	[Date]	column	->	Date	Filters	->	Is

Earliest
●								Right	click	the	[Date]	column	->	Remove	Duplicates
●								Select	the	[Date]	column	->	go	to	the	Transform	tab	->	Date	->	Year	->

Start	of	Year
●								Change	the	data	type	of	the	[Date]	column	to	a	date	(Yes	-	even	if	it

already	is	-	as	this	will	prevent	a	date	from	ever	getting	hard	coded	in	the
Power	Query	script!)

●								Right	click	the	date	in	row	1	(not	the	[Date]	column	header)	->	Drill
Down.

Figure	04-03:	Right	click	the	actual	date,	not	the	column	header!
Provided	you	have	done	everything	right,	you’ve	drilled	down	to	a	single	date,
forced	it	to	the	beginning	of	the	year,	and	should	now	have	a	query	that	looks	as
shown	here:

Figure	04-04:	The	contents	of	the	StartDate	query
A	few	key	things	to	be	aware	of	here:

1.	 You	should	not	see	a	row	number	or	column	header	of	‘List’	for	your	data
point	(if	you	do,	you	drilled	down	on	the	column	header,	not	the	data	point
itself)

2.	 The	date	will	display	in	the	format	you	use	to	display	Jan	1,	20xx
3.	 You	should	not	see	a	hard-coded	date	anywhere	in	the	formula	bar	(if	you

do,	you	forgot	to	re-set	the	data	type	before	drilling	down).
Once	you’re	confident	that	everything	is	set	up	correctly,	there	are	only	two
things	left	to	do:

1.	 Rename	the	query	to	StartDate	(notice	there	is	no	space	between	those
words	and	watch	the	casing	of	those	letters!)

2.	 Right	click	the	StartDate	query	in	the	Queries	pane	->	un-check	Enable
Load.

And	that’s	it.		You’ve	got	the	first	part	of	the	calendar	ready	to	go.		Now	it’s	time
to	create	the	EndDate	query.		It	follows	virtually	the	same	steps,	with	the
exception	of	targeting	the	end	of	the	year	for	the	last	date	in	the	data	set.

The	table	below	shows	a	quick	recipe	summary	for	building	both	the	StartDate
and	EndDate	queries:

StartDate	Recipe EndDate	Recipe
								Reference	the	table	with
earliest	date

●								Reference	table	with	latest	date

								Remove	all	except	the	[Date]
column

●								Remove	all	except	the	[Date]
column

								Filter	to	Dates	->	Is	Earliest ●								Filter	to	Dates	->	Is	Latest
								Remove	duplicates ●								Remove	duplicates
								Transform	date	to	Year	->	Start
of	Year

●								Transform	date	to	Year	-	>	End	of
Year

								Change	the	data	type	to	Date ●								Change	the	data	type	to	Date
								Right	click	the	date	cell	->
Drill	down

●								Right	click	the	date	cell	->	Drill
down

								Name	the	query	StartDate ●								Name	the	query	EndDate
								Disable	the	query	load ●								Disable	the	query	load
Figure	04-05:	The	recipe	for	creating	StartDate	and	EndDate	queries

Building	the	Base	Calendar	table
With	the	StartDate	and	EndDate	queries	set	up,	building	the	basic	calendar	table
becomes	very	easy:
●								Create	a	new	blank	query	(right	click	in	the	Queries	pane	->	New	Query	-

>	Blank	Query)
●								Rename	the	query	as	Calendar
●								Enter	the	following	formula	in	the	formula	bar:

={Number.From(StartDate)..Number.From(EndDate)}
●								Go	to	List	Tools	->	Transform	->	To	Table	->	OK
●								Change	[Column1]	to	a	Date	type
●								Rename	[Column1]	to	Date

CAUTION:		Your	StartDate	and	EndDate	queries	must	be	capitalized
consistently	with	the	names	of	the	queries	you	set	up	earlier.		And	if	you	put	in
spaces,	you’ll	need	to	escape	them	with	#"	"	like	this:	={Number.From(#"Start
Date")..Number.From(#"End	Date")}
In	many	cases,	this	single	column	Calendar	table	is	all	you	really	need.		If	you’re
comfortable	here,	then	all	that	is	left	to	do	is:

●								Go	to	Home	->	Close	&	Apply
●								Set	the	Calendar	table	as	a	date	table:

Go	to	the	Data	view	->	select	the	Calendar	table
Go	to	the	Modeling	tab	->	Mark	as	Date	Table	->	Date	->	OK

●								Go	to	the	Model	view	and	create	relationships	between
Calendar[Date]	and	Sales[Date]
Calendar[Date]	and	Budgets[Date].

It	is	also	highly	advisable	to	hide	the	[Date]	fields	on	both	the	Sales	and	Budget
tables,	forcing	users	to	pull	the	Date	from	the	Calendar	table,	and	avoid	potential
cross-filtering	issues.
When	complete,	the	model	view	will	look	as	follows:

	Figure	04-06:	The	contents	of	the	StartDate	query

Add	any	Additional	Columns	Needed
While	Power	BI	does	provide	automatic	date	hierarchies	for	models,	there	are
times	where	you’ll	prefer	to	take	control	of	this	yourself,	or	where	you’ll	need	to
add	date	formats	that	fall	outside	the	standard	Year,	Quarter,	Month	and	Day
provided	by	the	hierarchy.		Power	Query	provides	many	additional	date
transformations	for	you,	which	you	can	add	to	your	table	as	follows:

1.	 Select	Home	->	Edit	Queries
2.	 Edit	the	Calendar	query
3.	 Select	your	Date	column
4.	 Add	Column	->	Date	->	select	the	format	you	wish	to	add
5.	 Repeat	steps	2-3	as	many	times	as	necessary
6.	 Go	to	Home	->	Close	&	Apply	to	load	the	new	data	into	your	model.

And	that’s	it!		You’ve	got	a	fully	dynamic	calendar	that	will	scale	with	your
data!

Add	Fiscal	Year	Ends	to	Your	Calendar
The	base	Calendar	is	all	well	and	good,	but	what	if	you	don’t	work	with	a
standard	year	end	that	ends	on	December	31	each	year?		This	is	not	a	problem	at
all,	and	we	can	even	add	columns	for	Fiscal	Year,	Fiscal	Quarter	and	Fiscal
Month.
The	key	is	that	you	start	with	the	regular	Calendar	table	as	described	earlier.	
While	it’s	not	totally	necessary	in	all	cases,	you	may	want	to	adjust	your
StartDate	and	EndDate	queries	so	that	they	show	your	correct	fiscal	year	start
and	end	dates.		But	before	you	do,	create	a	new	query	to	hold	the	month	number
for	the	final	month	of	your	year	end.		The	steps	to	do	this	are	as	follows:
●								Create	a	new	blank	query
●								Rename	the	query	to	YEMonth
●								In	the	formula	bar	enter	the	numeric	value	of	the	final	month	of	your	year

end	(i.e.	for	a	March	31	year	end,	enter	3,	for	a	July	31	year	end,	enter	7)
●								Right	click	the	query	in	the	Queries	pane	and	uncheck	Enable	Load.

When	complete,	you	should	have	a	query	that	holds	the	month	of	your	year	end:

Figure	04-07:	The	YEMonth	query	set	up	for	a	March	31	year	end
Next,	we	can	adjust	the	StartDate	and	EndDate	queries	we	built	earlier	following
the	recipe	in	the	Table	shown	earlier.		(Be	aware	that	as	you	follow	the	next
steps,	you	will	be	asked	to	confirm	that	you	want	to	insert	new	steps.		Say	“Yes”
each	time	you	are	prompted.)
●								Edit	each	query
●								Select	the	Calculated	Start	of	Year	(or	Calculated	End	of	Year)	step

●								Go	to	Add	Column	->	Custom	Column
●								Leave	the	column	name	as	Custom,	but	enter	the	appropriate	formula	as

follows:

Formula	for	adjusting	the	StartDate Formula	for	adjusting	the	EndDate
=Date.AddMonths(

[Date],
YEMonth	-	12)

=Date.AddMonths(
[Date],
YEMonth)

Figure	04-08:	Modifying	the	StartDate	and	EndDate	boundaries
●								Click	OK
●								Right	click	the	new	[Custom]	column	->	Remove	Other	Columns
●								Rename	the	[Custom]	column	to	Date.

CAUTION:		Depending	on	your	data,	this	could	end	up	padding	your	calendar
with	an	extra	year	of	dates	on	either	end.		Should	you	wish	to	change	this,	add
or	subtract	12	months	immediately	after	the	YEMonth	in	the	formula.

A	modified	recipe	for	12-month	non-standard	year	ends	is	shown	below:

StartDate	Recipe EndDate	Recipe
								Reference	the	table	with
earliest	date

●								Reference	table	with	latest	date

								Remove	all	except	the	[Date]
column

●								Remove	all	except	the	[Date]
column

								Filter	to	Dates	->	Is	Earliest ●								Filter	to	Dates	->	Is	Latest
								Remove	duplicates ●								Remove	duplicates
								Transform	date	to	Year	->	Start
of	Year

●								Transform	date	to	Year	-	>	End	of
Year

								Add	a	custom	column	using
this	formula:

●								Add	a	custom	column	using	this
formula:

=Date.AddMonths(
[Date],
YEMonth	-	12)

=Date.AddMonths(
[Date],
YEMonth)

								Remove	all	but	the	[Custom]
column

●								Remove	all	but	the	[Custom]
column

								Change	the	data	type	to	Date ●								Change	the	data	type	to	Date
								Right	click	the	date	cell	->
Drill	down

●								Right	click	the	date	cell	->	Drill
down

								Name	the	query	StartDate ●								Name	the	query	EndDate
								Disable	the	query	load ●								Disable	the	query	load
Figure	04-09:	StartDate	and	EndDate	recipe	for	12-month	non-standard
year	ends
Remember,	adjusting	the	year	start	and	year	end	dates	on	your	calendar	is
entirely	optional.		All	of	the	patterns	shown	in	the	following	section	will	work
whether	you	do	this	or	not!

Fiscal	Periods
You	may	now	wish	to	add	further	columns	to	enrich	your	Calendar	table.		A
couple	of	good	candidates	might	be	Fiscal	MonthOfYear	and	QuarterOfYear,
since	they	won’t	match	up	to	the	standard	12-month	calendar	transforms
available	by	default.		We	can	easily	do	this,	however,	as	the	date	transformations
are	not	“standard”	we’ll	need	to	do	each	with	a	Custom	Column.
The	following	table	shows	the	formulas	required	in	order	to	create	these	columns

(assuming	you	have	called	your	primary	column	[Date]	and	have	created	the
YEMonth	query	described	earlier	in	this	chapter.)

Fiscal… Required
Columns

Formula

Month [Date] Date.Month(Date.AddMonths([Date]	,
-	YEMonth))

Quarter [Fiscal	Month] Number.RoundUp([Fiscal	Month]	/	3)
Month	of
Quarter

[Fiscal	Month] if	Number.Mod([Fiscal	Month],	3)	=	0
then	3
else	Number.Mod([Fiscal	Month],	3)

Figure	04-10:	Generating	fiscal	periods	for	a	12-month	non-standard	year
end

Fiscal	Year	End
The	most	important	field	in	the	previous	section	is	by	far	the	[Fiscal	Month]
column.		With	that	created,	it	becomes	fairly	easy	to	create	our	Fiscal	Year	End
and	Fiscal	Quarter	End	columns:

Fiscal… Required
Columns

Formula

Year	End [Date]
[Fiscal	Month]

Date.EndOfMonth(
Date.AddMonths([Date]	,	12	-

[Fiscal	Month])
)

Quarter
End

[Date]
[Fiscal	Month	of
Quarter]

Date.EndOfMonth(
Date.AddMonths([Date]	,	3	–
[Fiscal	Month	of	Quarter]))

Table	09-11:	Generating	Fiscal	Periods	ends	for	a	12-month	non-standard
year	end
The	image	shown	below	displays	a	12-month	calendar	for	a	March	31	year	end
generated	with	the	above	formulas.		Notice	how	the	Fiscal	Quarter	End	and
Fiscal	Year	End	periods	change	when	moving	from	March	31	to	April	1:

Figure	04-12:	Dynamically	generated	Calendar	table	for	a	March	31	year
end
And	remember,	it’s	simple	to	update	this	to	an	April	30	year	end:	just	change	the
YEMonth	query	value	to	four	(4)!

Building	a	4-4-5,	4-5-4	or	5-4-4	(ISO)	Calendar
If	you’ve	never	heard	of	one	of	these	kinds	of	calendars,	count	yourself	lucky,	as
they	add	a	whole	pile	of	complexity	to	your	analysis.		The	main	concept	of	a	4-
4-5	calendar	is	to	break	the	calendar	down	into	four	13-week	quarters	per	year
which	run	in	a	4-week,	4-week,	5-week	pattern.		Each	quarter	has	91	days,	every
year	end	is	on	a	different	day,	and	nothing	follows	the	standard	12-month
pattern.		(The	4-5-4	and	5-4-4	are	just	different	versions	of	the	same	concept
with	the	5-week	period	occurring	in	a	different	order.)
Why	would	anyone	want	to	build	a	calendar	like	this?		Simple:	in	retail,
comparing	May	12	from	one	year	to	the	next	isn’t	a	good	comparison,	as	it	may
be	a	Sunday	one	year	(like	2019)	and	a	Tuesday	the	next	(like	2020).		With	its
consistent	pattern,	the	4-4-5	calendar	(and	their	variants),	allow	us	to	easily
compare	the	third	Sunday	of	this	quarter	against	the	third	Sunday	of	the	same
quarter	in	the	prior	year,	thereby	drawing	a	much	more	accurate	comparison.
As	you	can	imagine,	creating	4-4-5	calendars	(and	their	variants)	are	a	little
tricky.		Believe	it	or	not,	we	still	start	with	the	base	calendar	pattern,	but	the
secret	is	to	make	sure	that	the	first	day	of	your	calendar	isn’t	Jan	1,	but	rather	the
first	day	of	one	of	your	fiscal	years.
From	there,	we	need	to	add	a	“DayID”	column	which	is	then	used	to	build	up	all
the	other	PeriodID	columns.		These	are	special	columns	which	always	increase
in	value,	never	resetting	at	the	end	of	a	period,	and	their	existence	is	important	to
allow	writing	DAX	measures	to	compare	values	between	periods.		With	the
PeriodID	columns	in	place,	we	can	then	build	a	variety	of	other	date	formats	as
well.
One	caveat	that	we	should	acknowledge	here:		there	are	hundreds	of	ways	that
companies	modify	this	style	of	calendar.		They	may	add	a	53rd	week	every	five	to
six	years	to	“reset”	their	year-end.		They	may	set	up	a	53rd	week	if	there	are	more
than	x	days	remaining	in	the	week,	or	other	manifestations	as	well.		This	pattern
deals	with	a	predictable	cycle	that	doesn’t	cater	to	these	issues.		While	these
variations	can	be	built,	the	patterns	in	this	chapter	will	need	to	be	adjusted	in
order	to	do	so.

Creating	StartDate	and	EndDate	queries	for	4-4-5	calendars
Let’s	assume	that	we	need	a	4-4-5	calendar.		Our	past	few	fiscal	years	started	on
2017-01-01,	2017-12-31	and	2018-12-30	(using	the	ISO	system	of	year-month-
day).		How	can	we	adjust	the	calendar	pattern	to	dynamically	choose	the	correct

year	start	and	end	dates	based	on	the	data	in	the	file?
The	easiest	way	to	do	this	is	to	create	another	new	blank	query	in	order	to	hold
one	of	our	specific	start	dates:
●								Create	a	new	blank	query	and	rename	it	to	Start445
●								In	the	formula	bar	enter	the	starting	date	for	one	of	your	years	(we’ll	use

2017-01-01)
●								Right	click	the	query	in	the	query	pane	and	uncheck	Enable	Load.

If	you’ve	done	everything	correctly,	you	should	get	a	new	query	that	displays
with	the	Date	icon	in	the	queries	pane:

Figure	04-13:	Recording	the	start	of	any	fiscal	year
While	we	could	now	modify	the	original	StartDate	and	EndDate	queries	for	the
next	steps,	the	following	modified	recipe	will	allow	you	to	load	a	4-4-5	calendar
in	the	same	file	as	the	original	calendar,	thereby	allowing	you	multiple	ways	to
slice	your	data:

StartDate	Recipe EndDate	Recipe
								Reference	the	table	with
earliest	date

●								Reference	table	with	latest	date

								Remove	all	except	the	[Date]
column

●								Remove	all	except	the	[Date]
column

								Filter	to	Dates	->	Is	Earliest ●								Filter	to	Dates	->	Is	Latest
								Remove	duplicates ●								Remove	duplicates

								Add	a	custom	column	using
this	formula:

●								Add	a	custom	column	using	this
formula:

=Date.AddDays(Start445,
364	*	Number.Round(
Duration.Days(
Duration.From([Date]	-
Start445))	/364	,	0))

=Date.AddDays(StartDate445,
364	*	Number.RoundUp(
Duration.Days([Date]	-
StartDate445)	/	364	,	0)	-	1)

								Remove	all	but	the	[Custom]
column

●								Remove	all	but	the	[Custom]
column

								Change	the	data	type	to	Date ●								Change	the	data	type	to	Date
								Right	click	the	date	cell	->
Drill	down

●								Right	click	the	date	cell	->	Drill
down

								Name	the	query	StartDate445●								Name	the	query	EndDate445
								Disable	the	query	load ●								Disable	the	query	load
Figure	04-14:	The	StartDate	and	EndDate	recipe	for	4-4-5	calendars	and
their	variants
The	formulas	in	the	recipe	are	a	little	complicated,	but	the	great	thing	about	them
is	that	they	will	automatically	adjust	to	use	the	earliest	fiscal	year	start	and	fiscal
year	ends	required	based	on	your	data.		This	is	fantastic,	as	it	means	that	the
calendar	table	will	automatically	span	only	the	required	years	for	the	data	model,
without	bloating	the	calendar	table	unnecessarily.
Notice	in	the	image	below,	the	StartDate445	query	is	not	returning	a	date	of
2017-01-01,	but	rather	2017-12-31.		Since	the	first	date	in	the	Sales	table	is
2018-01-01,	the	most	recent	445	year	begins	on	2017-12-31,	and	the	formula
generates	that	for	us	automatically!

Figure	04-15:	The	StartDate445	(left)	and	EndDate445(right)	queries
With	the	StartDate445	and	EndDate445	queries	created,	the	base	calendar	can	be
created	through	the	usual	recipe	steps:
●								Create	a	new	blank	query	(right	click	in	the	Queries	pane	->	New	Query	-

>	Blank	Query)
●								Rename	the	query	as	Calendar445
●								Enter	the	following	formula	in	the	formula	bar:

={Number.From(StartDate445)..Number.From(EndDate445)}

●								Go	to	List	Tools	->	Transform	->	To	Table	->	OK
●								Change	[Column1]	to	a	Date	type
●								Rename	[Column1]	to	Date.

Creating	the	“DayID”	column
It’s	now	time	to	add	the	second	most	critical	column	for	the	Calendar445	table:
the	DayID	column.		This	column	is	used	to	drive	every	other	PeriodID	column,
and	therefore	the	rest	of	the	calendar	columns	as	well.
After	ensuring	that	your	calendar	starts	from	the	first	day	of	one	of	your	fiscal
years,	you	simply	need	to:
●								Go	to	Add	Column	->	Index	Column	->	From	1
●								Rename	the	new	column	to	DayID.

And	that’s	it!		Now	the	calendar	can	be	fleshed	out	with	the	rest	of	the	PeriodID
columns:

Figure	04-16:	The	base	Calendar445	table	starting	from	the	most	recent
fiscal	year	beginning

Creating	the	remaining	PeriodID	columns
Next,	you’ll	need	to	add	the	remaining	Period	ID	columns	in	order	to	drive	other
date	displays.		These	are	all	created	via	the	Add	Column	->	Custom	Column
dialog	using	the	following	formulas:

Column Required
Columns

Formula

WeekID [DayID] Number.RoundUp([DayID]/7)
MonthID
(for	4-4-5
calendars)

[DayID] Number.RoundDown([DayID]/91)*3+
(if	Number.Mod([DayID],91)=0	then
0
		else	if	Number.Mod([DayID],91)<=

28	then	1
		else	if	Number.Mod([DayID],91)<=
56	then	2
		else	3
)

	
MonthID
(for	4-5-4
calendars)

[DayID] Number.RoundDown([DayID]/91)*3+
(if	Number.Mod([DayID],91)=0	then
0
		else	if	Number.Mod([DayID],91)<=
28	then	1
		else	if	Number.Mod([DayID],91)<=
63	then	2
		else	3
)

	
MonthID
(for	5-4-4
calendars)

[DayID] Number.RoundDown([DayID]/91)*3+
(if	Number.Mod([DayID],91)=0	then
0
		else	if	Number.Mod([DayID],91)<=
35	then	1
		else	if	Number.Mod([DayID],91)<=
63	then	2
		else	3
)

	
QuarterID [DayID] Number.RoundUp([DayID]/91)

	
YearID [DayID] Number.RoundUp([DayID]/364)
Figure	04-17:	Formulas	for	PeriodID	columns	for	4-4-5	calendar	variants
The	image	below	shows	all	PeriodID	columns	for	a	4-4-5	calendar	which	starts
on	2017-12-31:

Figure	04-18:	PeriodIDs	created	for	a	4-4-5	Calendar

Adding	Other	Fiscal	Periods
From	this	point	forward,	it	is	just	a	simple	matter	of	deciding	which	date
columns	you	want	on	your	calendar	table	and	adding	them	based	on	the	formulas
in	the	tables	below.
Note	that	while	the	DayID	column	is	required	for	each	of	the	columns	in	the
PeriodID	section,	the	remainder	of	the	formulas	in	this	chapter	require	a	variety
of	columns.		Each	required	precedent	column	is	included	in	the	tables	with	the
formula,	so	watch	carefully	to	make	sure	you	don’t	miss	one	that	is	essential	for
the	format	you’re	adding.
PRO	TIP:		If	you	don’t	want	the	precedent	column	in	your	table…	use	it	to
create	the	field	you	do	want,	and	then	remove	it	afterwards.		Power	Query
won’t	mind!

Fiscal	Year	Columns
Column Required

Columns
Formula

Year	* StartDate445
[YearID]

Date.Year(Date.From(StartDate))+
[YearID]

Figure	04-19:	Formula	to	generate	the	Fiscal	Year
NOTE:	Depending	on	the	first	date	used	and	the	fiscal	year	you	wish	to
represent	for	it,	you	may	need	to	add	or	subtract	1	from	the	end	result.

X	of	Year	Columns
…	of
Year

Required
Columns

Formula

Quarter [QuarterID] Number.Mod([QuarterID]-1,4)+1
Month [MonthID] Number.Mod([MonthID]-1,12)+1
Week [WeekID] Number.Mod([WeekID]-1,52)+1
Day [DayID] Number.Mod([DayID]-1,364)+1
Figure	04-20:	Formulas	for	generating	QuarterOfYear,	MonthOfYear,	etc.

X	of	Quarter	Columns
…	of
Quarter

Required
Columns

Formula

Month [MonthOfYear] Number.Mod([MonthOfYear]-1,3)+1
Week [WeekOfYear] Number.Mod([WeekOfYear]-1,13)+1

Day [DayOfYear] Number.Mod([DayOfYear]-1,91)+1
Figure	04-21:	Formulas	for	generating	MonthOfQuarter,	WeekOfQuarter,
etc.

X	of	Month	Columns
…	of
Month

Required
Columns

Formula

Day
(for	4-4-5
calendars)

[DayOfQuarter]
[MonthOfQuarter]

if	[MonthOfQuarter]	=	1
					then	[DayOfQuarter]
else	if	[MonthOfQuarter]	=	2
					then	[DayOfQuarter]	-	28
else
					[DayOfQuarter]	-	35

Day
(for	4-5-4
calendars)

[DayOfQuarter]
[MonthOfQuarter]

if	[MonthOfQuarter]	=	1
					then	[DayOfQuarter]
else	if	[MonthOfQuarter]	=	2
					then	[DayOfQuarter]	-	28
else
					[DayOfQuarter]	-	63

Day
(for	5-4-4
calendars)

[DayOfQuarter]
[MonthOfQuarter]

if	[MonthOfQuarter]	=	1
					then	[DayOfQuarter]
else	if	[MonthOfQuarter]	=	2
					then	[DayOfQuarter]	-	35
else
					[DayOfQuarter]	-	63

Week	* [DayOfMonth] Number.RoundUp([DayOfMonth]/7)
Figure	04-22:	Formulas	for	generating	DayOfMonth	and	WeekOfMonth
CAUTION:		The	appropriate	[DayOfMonth]	column	must	be	created	before
the	[WeekOfMonth]	column	can	be	created.

X	of	Week	Columns
…	of
Week

Required
Columns

Formula

Day [DayOfYear] Number.Mod([DayOfYear]-1,7)+1
Figure	04-23:	Formula	for	building	DayOfWeek
Days	in	X	Columns

Days	in… Required Formula

Columns
Year N/A 364
Quarter N/A 91
Month
(for	4-4-5
calendars)

[WeekOfQuarter] if	[WeekOfQuarter]	>	8
then	35
else	28

Month
(for	4-5-4
calendars)

[WeekOfQuarter] if	[WeekOfQuarter]	>	4	and
[WeekOfQuarter]	<10
then	35
else	28

Month
(for	5-4-4
calendars)

[WeekOfQuarter] if	[WeekOfQuarter]	<	5
then	35
else	28

Week N/A 7
Figure	04-24:	Formulas	for	generating	DaysInYear,	DaysInQuarter,	etc.
NOTE:		Only	DaysInMonth	requires	a	formula	in	this	case,	as	all	the	other
versions	have	a	consistent	number	of	days	in	the	given	period.

Start	of	X	Columns
Start	of
…

Required
Columns

Formula

Week [Date],
[DayOfWeek]

Date.AddDays([Date],-([DayOfWeek]-1))

Month [Date],
[DayOfMonth]

Date.AddDays([Date],-
([DayOfMonth]-1))

Quarter [Date],
[DayOfQuarter]

Date.AddDays([Date],-
([DayOfQuarter]-1))

Year [Date],
[DayOfYear]

Date.AddDays([Date],-([DayOfYear]-1))

Figure	04-25:	Formulas	for	generating	StartOfWeek,	StartOfMonth,	etc.

End	of	X	Columns
End	of	… Required

Columns
Formula

Week [StartOfWeek] Date.AddDays([StartOfWeek],6)
Month [StartOfMonth],

[DaysInMonth]
Date.AddDays([StartOfMonth],
[DaysInMonth]-1)

Quarter [StartOfQuarter] Date.AddDays([StartOfQuarter],91-1)
Year [StartOfYear] Date.AddDays([StartOfYear],364-1)
Figure	04-26:	Formulas	for	generating	EndOfWeek,	EndOfMonth,	etc.

Summary
No	matter	how	you	want	to	slice	up	your	data	by	time	periods,	Power	BI	can
handle	it.		The	secret	is	getting	your	hands	on	a	proper	calendar	table	in	order	to
do	the	job.		And	if	IT	doesn’t	have	one	(or	won’t	share),	then	no	big	deal,	you
can	simply	create	one	on	the	fly.
Even	better	than	just	being	able	to	work	around	potential	problems,	however,	is
the	ability	to	expand	your	intelligence	to	prototype	comparisons	that	people	in
your	company	may	not	have	been	able	to	accomplish	previously.		Have	you	ever
had	to	report	using	one	calendar	for	head	office,	another	for	internal	purposes,
and	yet	another	to	make	comparisons	for	reasonability?		I	have…
In	the	golf	industry,	we	ran	a	season	from	May	1	to	Apr	30.		Our	financial	year
end	was	December	31,	and	we	issued	payroll	bi-weekly.		And	naturally,	we	did	a
fair	amount	of	retail	sales	too,	so	wouldn’t	it	be	nice	to	have	a	4-4-5	calendar	for
comparisons?
Well	why	not?		Today,	with	Power	Query	at	our	fingertips,	we	can	create
multiple	calendar	tables	for	a	single	solution.		Whether	you	have	a	single	fact
table	or	multiple	fact	tables,	so	long	as	each	calendar	dimension	has	a	column	of
unique	dates,	there	is	no	limit	to	how	many	dimension	tables	we	can	add	in:

Figure	04-27:	Multiple	calendars	linked	into	a	single	model
And	just	like	that	we	can	now	create	reports	for	each	different	audience,
providing	the	date	formats	that	they	want	to	see	for	categorization	and	slicing:

Figure	04-28:	The	same	facts	sliced	up	based	on	different	calendars

	
About	the	Author

KEN	PULS,	FCPA,	FCMA,	 is	 the	 president	 of	Excelguru	Consulting	 Inc,	 and
has	been	a	Microsoft	MVP	in	various	categories	since	2006.	Ken	 is	a	blogger,
author	and	trainer	with	over	20	years	of	corporate	accounting	and	IT	experience.
He	 is	one	of	 the	world’s	 leading	experts	 in	Microsoft	Excel,	Power	Query	and
Power	BI,	and	provides	live	and	online	training	to	clients	around	the	world.
For	self	service	BI	training,	look	us	up	at	www.excelguru.ca,	our	consulting
division	is		www.cudaso.com,	and	for	online	Power	Query	training	you	can’t
beat	our	academy	at	https://academy.powerquery.training.
	
	

http://www.excelguru.ca
http://www.cudaso.com
https://academy.powerquery.training

Chapter	5:	Transform	and	combine	your	data	with	ETL
tool	named	Power	Query
	
Author:	Jesus	Gil	|	Dr	Rudo	SQL
Since	its	birth	Power	Query	has	become	an	easy-to-use	ETL	tool.	However,	how
can	we	exploit	this	ease	of	use?	What	is	the	best	practice	to	do	it?	In	this	chapter
we	will	talk	about	how	and	what	to	do	to	achieve	it.

What	is	Power	Query?
In	Microsoft's	own	words,	Power	Query	it's	described	as	following:

Power	Query	is	the	Microsoft	Data	Connectivity	and	Data	Preparation
technology	that	enables	business	users	to	seamlessly	access	data	stored	in
hundreds	of	data	sources	and	reshape	it	to	fit	their	needs,	with	an	easy	to
use,	engaging	and	no-code	user	experience.
Supported	data	sources	include	a	wide	range	of	file	types,	databases,
Microsoft	Azure	services	and	many	other	third-party	online	services.
Power	Query	also	provides	a	Custom	Connectors	SDK	so	that	third	parties
can	create	their	own	data	connectors	and	seamlessly	plug	them	into	Power
Query.

Where	is	used	Power	Query?
Power	Query	was	born	on	6th	July	2013	previously	known	as	codename	“Data
Explorer”,	first	as	an	add-in	for	Excel	and	then	later	incorporated	as	a	full
feature	of	Excel	and	Power	BI.
To	see	the	original	post	typing
https://blogs.msdn.microsoft.com/dataexplorer/2013/07/06/data-explorer-is-now-
microsoft-power-query-for-excel/
In	fact,	do	you	remember	the	famous	Power	BI	on	Excel?
●								Power	Query
●								Power	Pivot
●								Power	Map
●								Power	View

All	these	add-ins	were	integrated	on	Excel	2013	and	all	under	the	same	file
“*.xlsx”
These	add-ins	evolved	and	became	powerful	tools	or,	as	the	case	may	be,	part	of
the	visualizations	of	Power	BI	(i.e.	power	map)
In	our	days	you	can	choose	where	you’ll	use	Power	Query	because	is	natively
integrated	in	several	Microsoft	Products	as
●								Microsoft	Power	BI
●								Microsoft	Excel
●								Microsoft	SQL	Server	Data	Tools	for	Visual	Studio
●								Microsoft	Common	Data	Service	for	Apps

For	more	info	about	it	see	https://docs.microsoft.com/en-us/power-query/power-
query-what-is-power-query#where-to-use-power-query

https://blogs.msdn.microsoft.com/dataexplorer/2013/07/06/data-explorer-is-now-microsoft-power-query-for-excel/

Why	do	people	love	Power	Query?
The	answer	from	my	viewpoint	is	because	Power	Query	is	a	great	tool,	support
you	to	pull	data	from	many	different	sources	to	can	see	it	all	in	the	same	place
together.		Let	me	explain:
●								It	has	a	simple	interface	based	on	ribbons	with	buttons,
●								Any	user	can	learn	how	upload	data	because	the	user	interface	was

designed	to	understand	the	process	through	simple	clicks,
●								Power	Query	has	a	powerful	language	(named	M)	to	code	and	perform

complex	data	manipulations,
●								It’s	easy	to	connect	to	multiple	data	sources	and	merge	data,	and	(most

important)
●								You	can	work	with	both	structured	and	unstructured	data

ETL:	The	concept
ETL	is	an	acronym	that	means	Extract,	Transform	and	Load.
The	ETL	process	became	a	famous	concept	early	in	the	1970s.	This	is	the	basic
concept	to	upload	data	to	our	data	model.		ETL	processes	are	mostly	used	on
Data	Warehouse,	Data	Marts,	ODS	or	in	our	case	uploading	data	to	Power	BI.
With	Power	Query	we	will	be	building	the	ETL	process	to	copy	data	from	one	or
more	sources	into	Power	BI,	as	described	in	the	steps	below:
Extraction:	will	copy	or	extracting	data	from	sources	(homogenous	or
heterogeneous)
Transformation:	will	process	the	data	and	applying	for	example	data	cleansing,
data	types	conversions,	business	rules,	etcetera	and	finally	transforming	the	data
in	a	format	that	can	be	understood	by	Power	BI
Load:	will	be	the	process	responsible	for	inserting	the	data	into	our	Power	BI
data	model	

Building	the	ETL	with	Power	Query
With	Power	Query	we	can	access	data	stored	in	several	data	sources	and	if	offers
the	best	no-code	user	experience:	You	can	access	file	types	such	as	csv,	Excel,
databases,	third-party	online	services,	Microsoft	Azure,	SQL	Server	On-premise
services	and	many	more.

Note:	Power	Query	also	provides	the	possibility	of	building	your	own	connector
using	the	Data	Connector	SDK.		All	the	tools	to	do	this	are	public	and
stored	in	a	GitHub	repo.	For	more	information,	see
https://github.com/Microsoft/DataConnectors.

When	you	are	using	Power	BI	desktop,	all	your	ETL	functionality	will	be
provided	via	the	Power	Query	Editor.		To	launch	it,	click	on	Edit	Queries	from
the	Home	tab.

Figure	05-01:	Launching	the	Power	Query	editor

Why	do	we	get	taken	to	a	blank	pane?

Figure	05-02:	Black	pane	in	Power	Query	editor
	
Because	we	not	have	data	connections	yet,	so	the	Power	Query	Editor	is	waiting
you	import	data	and	build	data	connections.
If	you	open	a	previous	report,	you’ll	see	that	have	a	Queries	and	data.
Now	we	will	load	information	from	the	following	Web	data	source	and	then	you
can	begin	to	shape	the	data	found	at
https://en.wikipedia.org/wiki/UEFA_Champions_League.
Clicking	on	New	Sources	will	show	the	Get	Data	window.		Select	Other	sources,
Web	data	source	and	finally	click	on	Connect	button.

Figure	05-03:	Get	Data	window,	to	select	the	data	source

https://en.wikipedia.org/wiki/UEFA_Champions_League

Type	the	URL	source	and	click	the	OK	button.

Figure	05-04:	Typing	the	URL	source
The	Access	Web	Content	window	asks	us	the	type	of	access	we	will	have	to	the
site.	In	our	case	we	choose	the	Anonymous	access	(because	we	don’t	need	any
kind	of	credential	to	get	the	info)	and	then	click	on	Connect	button.
●								Tip:	the	best	practice	is	always	verifying	the	data	authenticity,	use

Windows	or	Organizational	account	over	all	when	we	will	get	sensitive
data.

	

Figure	05-05:	Asking	us	the	type	access

Figure	05-06:	Establishing	connection	to	the	data	source	site
After	the	Connecting	process	finishes,	we’ll	see	the	Navigator	window	showing
all	tables	that	could	be	converted	from	web	data	sources.
The	left-side	panel	show	the	tables	names	and	the	right-side	panel	show	the	data
rows	preview.	Please	select	the	Performances	in	the	European	Cup	and	UEFA
Champions	League	by	club	table	and	click	OK	to	continue.

Figure	05-07:	Navigator	window	allow	the	first	look	to	the	data	uploaded

After	clicking	OK,	Power	Query	will	connect	to	and	process	some	of	the	data,
loading	it	into	the	Power	Query	Editor	for	you	to	review.
●								In	the	ribbon	you	can	view	as	the	buttons	are	now	active	indicating	that

we	can	interact	with	them
●								The	Queries	Pane	(on	the	left	side),	shows	all	the	queries	you	have,

allowing	you	to	select	and	view	them
●								In	the	center-pane	you	can	view	the	data	imported	and	available	for

shaping
●								In	the	right-pane	(Query	Settings)	you	have	the	following	windows:

Properties:	This	shows	the	query’s	name	and	allows	us	to	rename
and	disable	the	load	to	report	feature,	or	not	include	this	query	in
the	report	refresh
Applied	steps:	is	where	Power	Query	shows	each	transformation
that	we	are	applying	on	the	query

Figure	05-08:	Power	Query	Editor	window
Points	to	make	note	of:
●								Number	of	columns	and	rows	uploaded
●								Preview	Downloaded	time

This	info	is	very	import	to	can	doing	a	quickly	audit	on	the	newly	loaded	data.

Transform	ribbon	tab
This	tab	provides	access	to	data	transformation	tasks,	the	most	popular	being
Rename	Column,	Split	Column,	Remove	Columns,	change	Data	Type	or	Use
first	Row	as	Headers.

Figure	05-09:	Transform	ribbon	tab,	general	look

Use	first	Row	as	Headers	(Promoted	Headers	task)
One	regular	issue	when	we	load	web	data	is	that	the	header	name	shows	up	as
the	first	data	row.		To	fix	this	issue	we	will	promote	this	row	as	our	header.
On	the	Transform	tab	click	on	Use	first	Row	as	Headers	button	appears	two
options:	Use	First	Row	as	Headers	&	Use	Headers	as	First	Row,	select	the	first
option.

Figure	05-10:	Launching	the	task:	Use	First	Row	as	Headers
On	the	Applied	Steps	pane	now,	we	have	two	new	steps:	Promoted	Headers	&
Changed	Type	1:

Figure	05-11:	In	the	Query	Settings	pane,	the	APPLIED	STEPS	list	the

query	step	that	reshape	your	data
Remove	the	Changed	Type1	step.

Changing	Data	Type
Select	the	Titles	column	then,	on	the	Transform	tab,	click	on	the	Data	Type
button.		A	popup	menu	appears.	Click	on	the	Whole	Number	option.

Figure	05-12:	Changing	data	type	from	char	to	whole	number
Repeat	the	same	steps	for	Runners-up	column	and	they	will	then	both	show	as
the	Number	Data	Type.
Tips
●								One	easy	way	to	change	data	type	is	using	the	Detect	Data	Type	button,

which	will	change	the	data	type	for	you	automatically.		But	please	always
validate	the	result	and,	if	it	is	not	right,	change	manually	as	explained
before.

●								Other	way	is	to	select	the	column,	mouse	right	click	and	click	Change
Type	on	the	popup	menu,	then	select	Whole	Number.

Figure	05-13:	Using	automatic	detection	button

Figure	05-14:	Using	Change	Type,	on	popup	menu,	from	a	column

Add	Column	tab
In	this	tab	we	can	add,	format	or	add	a	custom	column	with	M	formulas.
●								The	Power	Query	M	formula	language	is	a	powerful	query	language,	is

optimized	for	building	queries	that	mashup	data	and	is	highly	flexible,
functional	and	case	sensitive	similar	to	F#	language

Figure	05-15:	Transform	Add	Column	tab,	general	look

Adding	custom	column	with	M	Formula
In	our	example	we’ll	add	a	custom	column	named	“TotalTitles”	and	the	formula
will	be	[Titles]	+	[#"Runners-up"]

Figure	05-16:	Building	a	Custom	column	with	Power	Query	M	language
After	adding	the	column	“TotalTitles”,	in	the	Applied	Steps	panel	you	will	see	a
new	step	named	Added	Custom:

Figure	05-17:	Added	Custom	appears	as	new	query	step	at	the	APPLIED
STEPS	list

View	tab
Have	you	ever	wondered	how	you	can	get	the	quality	of	the	data	you	have
uploaded?
●								Well,	the	answer	is	on	the	view	tab	ribbon.		(This	tab	is	used	to	toggle

whether	panes	or	windows	are	displayed	or	not)
This	ribbon	is	very	powerful	as	you	have	options	to	get	the	distribution,	profile
or	quality	of	the	data	showing	at	the	top	of	your	columns.		In	addition,	you	can
display	the	Advanced	Editor	if	you	want	to	read	the	M	code	that	was	generated
during	the	button	clicks.

Figure	05-18:	View	tab,	general	look

Advanced	Editor
On	the	view	tab,	click	on	Advanced	Editor	button.		This	launches	the	Advanced
Editor	window,	where	you	can	edit	the	query.
Following	our	example	now	we	will	remove	the	"Seasons	runner-up"	column.
●								In	the	let	body

type	a	comma	at	the	line	end	“Added	Custom”
type	the	following	code:
▪								#"Removed	Columns"	=	Table.RemoveColumns(#"Added

Custom",{"Seasons	runner-up"})
●								In	the	in	body	replace	#"Added	Custom"	for	#"Removed	Columns"

You	code	should	look	similar	to	the	image	below:

Figure	05-19:	Advanced	Editor	with	M	language
Click	the	Done	button	to	return	the	Power	Query	Editor.
You	can	now	observe	two	things:
●								First,	the	column	"Seasons	runner-up"	has	been	removed
●								Second,	one	new	step	named	“Removed	Columns”	was	added	in	the

Applied	Steps	window
	
Figure	05-20:	Power	Query	Editor	&	Query	Setting	pane

Tip:
The	Advanced	Editor	is	very	powerful.		You	could	create	new	columns,
custom	columns,	remove	columns,	and	more,	all	based	in	the	Power
Query	Formula	Language	(aka	the	M	Language).	So,	if	you	are	a
developer	may	by	you	feel	more	comfortable	coding	with	M	language	for
ETL	task,	but	if	you	are	like	my	friend	Ken	Puls	a	Power	Query	guy	the
way	easier	will	be	just	click	buttons.
For	a	complete	reference	about	M	language	visit	Power	Query	M	function
reference	site	at	https://docs.microsoft.com/en-us/powerquery-m/power-
query-m-function-reference.

https://docs.microsoft.com/en-us/powerquery-m/power-query-m-function-reference

Finally,	to	apply	the	changes	and	close	Query	Editor,	change	to	Home	tab	and
click	on	Close	&	Apply	button.

Figure	05-21:	Close	&	Apply	button
The	transformed	dataset	will	appear	in	Power	BI	Desktop,	with	the	table(s)
ready	to	be	used	for	creating	reports	&	dashboards.

Figure	05-22:	Dataset	ready	to	use	in	the	Power	BI	Desktop

Summary
As	we	have	seen	Power	Query	is	a	very	easy	tool	to	use,	but	also	very	powerful
at	the	same	time.
You	can	shape	and	combine	data	easily	using	Power	Query	Editor	or	if	you	are
most	dedicated	to	developing	you	can	use	the	Advanced	Editor.
Without	a	doubt,	Power	Query	has	never	ceased	to	amaze	us	since	6th	July	2013
to	date.
I	invite	you	to	exploit	its	features	and	share	their	experience	to	help	grow	the
Power	BI	community	around	the	world.
	

About	the	Author

Jesus	Gil	aka	Dr	Rudo	SQL	is	a	Data	Platform	MVP	since	2010,	he	is	a	co-
author	of	SQL	Server	Upgrade	Technical	Guide	for	2012	and	2014	versions.
Jesus	is	a	regular	speaker	of	SQL	Server	and	Microsoft	events	around	Latin
America,	he	is	the	SQL	Saturday	Mexico	organizer.	Early	2019	Jesus	authored	4
courses	for	Microsoft	LATAM	talking	about	SQL	Server	2008	&	2008R2	End	of
Support.	His	main	motivation	are:	Pily,	Monse	and	Mandy.

http://download.microsoft.com/download/9/5/3/9533501a-6f3e-4d03-a6a3-359af6a79877/sql_server_2012_upgrade_technical_reference_guide_white_paper.pdf
https://download.microsoft.com/download/7/1/5/715BDFA7-51B6-4D7B-AF17-61E78C7E538F/SQL_Server_2014_Upgrade_technical_guide.pdf

Chapter	6:	Creating	a	Shared	Dimension	in	Power	BI
Using	Power	Query:	Basics	and	Foundations	of	Modeling
	
Author:	Reza	Rad
Data	warehouse	professionals	understand	the	concept	of	shared	dimensions	and
star	schema	designs	always	include	these	types	of	entities.	However,	many
Power	BI	users	are	not	coming	from	a	data	warehousing	background.	It	is
necessary	to	understand	some	of	the	concepts	to	design	a	good	performing
Power	BI	model.	I	have	written	about	some	of	the	concepts	in	an	easy-to-
understand	way	in	some	articles,	one	of	them	is	this	article:	What	is	a	shared
dimension,	and	Why	do	you	need	that	in	your	Power	BI	model?	In	this	chapter,	I
will	explain	how	the	use	of	shared	dimensions	can	prevent	many	issues,	as	well
as	the	need	for	both	directional	relationship.	If	you	like	to	learn	more	about
Power	BI,	read	the	Power	BI	book	from	Rookie	to	Rock	Star.

https://radacad.com/what-is-the-direction-of-relationship-in-power-bi
https://radacad.com/online-book-power-bi-from-rookie-to-rockstar

Sample	Dataset
To	follow	the	example	in	this	chapter,	download	the	custom	Excel	data	source
from	the	code	of	the	book.	In	this	sample	dataset,	there	are	three	tables	as	shown
below:
Table	Inventory:	shows	the	inventory	details	for	each	day	in	each	warehouse.	

Figure	06-01:	Inventory	Table	
Table	Sales:	shows	the	sales	transactions.	

Figure	06-02:	Sales	Table
Table	Manufacturing:	shows	summarized	information	about	the	cost	of
producing	each	product	based	on	date.	

Figure	06-03:	Manufacturing	Table	

Design	Challenge
When	you	load	the	three	tables	above	into	a	model,	you	can	see	that	they	are	not
related	to	each	other.	

Figure	06-04:	Design	Challenge	of	the	three	tables	
	
Many-to-many	Relationship	Issue
If	you	try	to	create	the	relationship	yourself	based	on	Product,	for	example,
between	the	two	tables	Inventory	and	Manufacturing,	you	get	the	message	pop
up	about	the	need	for	Many-to-Many	relationship!

Figure	06-05:	Many-to-many	relationship	Issue	
Don’t	click	on	the	option	to	create	the	relationship.	A	many-to-many	relationship
is	not	the	best	type	of	relationship	to	use	here.	The	reason	that	the	relationship

can	be	only	created	as	a	many-to-many	relationship	is	that	the	Product	column
isn’t	unique	in	any	of	these	tables.	This	means	that	no	single	table	that	can	be
used	as	a	source	of	one-to-many	relationship.
When	neither	table	in	a	relationship	has	unique	values	for	the	relationship
field,	then	many-to-many	will	be	suggested.	However,	I	recommend	that	you
don’t	use	that.	Read	the	rest	of	the	chapter	to	learn	how	to	fix	it	using	a	shared
dimension.
	
Both-directional	Relationship	Issue
Another	common	issue	happens	when	you	have	a	unique	list	of	values	but	you
still	want	to	slice	and	dice,	based	on	both	tables.	Let’s	say	you	want	to	create	the
relationship	between	Inventory	table	and	the	Manufacturing	table	but	this	time
based	on	the	Date	field.

Figure	06-06:	Both-directional	Relationship	Issue	
In	this	scenario,	we	have	unique	values	for	the	Date	field	in	both	tables;	so	that
the	relationship	won’t	be	many-to-many.	However,	because	we	want	to	slice	and
dice	Inventory	data	by	dates	selected	from	the	Manufacturing	table,	and	vice
versa,	then	the	relationship	needs	to	be	both-directional.
A	both-directional	relationship	usually	happens	when	you	want	to	use	fields

from	both	tables	for	slicing	and	dicing.	A	both-directional	relationship	has	a
significant	effect	on	performance	and	is	not	recommended.	Read	the	rest	of
this	chapter	to	learn	how	it	can	be	fixed	using	a	shared	dimension.
Another	issue	with	the	both-directional	relationships	is	that	you	cannot	apply
them	on	all	relationships	in	your	model,	because	it	might	create	circular
reference	scenarios!
	
Master	List	Does	Not	Exist!
The	third	issue	of	design	with	the	three	tables	above	is	that	there	is	no	master
list!	There	are	some	products	in	each	table,	and	we	do	not	have	necessarily	all
products	in	each	table.	Or	there	are	some	dates	in	each	table,	and	we	do	not	have
necessarily	all	dates	in	each	table	(Power	BI	will	create	an	auto	date	dimension
which	can	resolve	this	issue	only	for	date	fields,	but	what	about	other	fields	such
as	Product?).
To	explain	the	issue,	I’ve	created	both	directional	relationships	between	all	three
tables	to	make	sure	that	they	are	all	filtering	each	other.	All	the	relationships	are
based	on	date	fields.

Figure	06-07:	All	both-directional	relationship	Issue	
Then	I	created	a	table	with	the	column	Date	from	the	Sales	table	as	a	slicer	and
three	table	visuals	from	each	table.	The	date	slicer	should	be	able	to	filter	all
three	tables	based	on	the	Date	selection;

Figure	06-08:	There	is	no	master	list/table	to	filter	the	data	of	all
three	tables	
If	I	select	a	column	in	the	date	slicer,	it	will	filter	all	three	tables	(because	of
both-directional	relationships).	However,	if	you	look	closely,	the	two	dates
mentioned	in	the	above	screenshot	and	some	other	dates	in	the	Inventory	and
Manufacturing	tables,	don’t	exist	in	the	slicer.	Because	the	date	slicer	is	coming
from	the	Sales	table,	and	the	Sales	table	doesn’t	have	those	dates	in	it!	We	will
have	the	same	challenge	with	the	Product	slicer	if	we	add	it.
If	you	use	a	column	as	a	slicer	which	doesn’t	have	all	possible	values	in	it,
then	it	cannot	show	the	correct	data	from	all	tables.	It	is	not	recommended	to
design	it	this	way,	read	the	rest	of	the	chapter	to	learn	how	shared	dimension
can	fix	this	challenge.
	

Shared	Dimension:	Solution
I	just	mentioned	three	of	the	challenges	you	might	have	with	a	design	like	above.
Usually,	you	don’t	have	just	three	tables;	you	will	have	many	more,	and	you	will
also	have	many	more	challenges	with	a	design	such	as	the	one	above.	The	best
practice	when	designing	such	a	model	is	to	create	a	shared	dimension.	A	shared
dimension	is	a	dimension	that	is	shared	between	multiple	fact	tables.	(In	formal
terminology,	this	is	called	a	conformed	dimension).	In	this	article,		I	have
explained	the	purpose	of	fact	and	dimension	tables.	However,	here	is	just	a	short
summary:
	
●								A	dimension	table	is	a	table	that	has	descriptive	information,	such	as	Product.

Columns	from	the	dimension	table	usually	will	be	used	to	slice	and	dice	the
data	from	the	fact	table.	

●								A	fact	table	is	a	table	that	has	numeric	and	(usually)	additive	information,
such	as	Sales.	Columns	from	the	fact	table	usually	will	be	used	as	metrics	and
measures	of	our	report	and	sliced	and	diced	by	dimension	tables.	

Well,	given	the	design	above,	what	are	our	dimensions?	They	are	Date	and
Product.	What	are	the	fact	tables?		They	are	Sales,	Inventory,	and
Manufacturing.	The	challenge	is	that	there	is	no	dimension	table.	In	this	case,	the
Dimensions	are	being	stored	as	columns	inside	the	fact	tables,	and	this	creates
inconsistency	in	design	approaches.	What	you	should	do	is	to	build	the	two
tables	separately.	Because	the	Date	and	Product	tables	will	be	tables	that	slice
and	dice	all	the	fact	tables	and	will	be	related	to	all	fact	tables,	we	call
them	shared	dimensions.	Shared	dimension	is	just	a	dimension	which	is	shared
between	multiple	fact	tables.
A	design	sketch	of	tables	above	with	shared	dimensions	would	be	like	this:

https://radacad.com/data-preparation-first-and-foremost-important-task-in-power-bi
https://radacad.com/data-preparation-first-and-foremost-important-task-in-power-bi
https://radacad.com/data-preparation-first-and-foremost-important-task-in-power-bi

Figure	06-09:	Solution	Relationship	Diagram	
	

Creating	Shared	Dimension
Now	that	you	know	what	a	shared	dimension	is	and	how	it	can	be	helpful,	let’s
see	how	we	can	add	one	to	our	design.	You	can	build	the	shared	dimension	in
many	ways:	using	DAX	calculated	tables,	using	T-SQL	(if	sourced	from
database	systems),	or	in	Power	Query.	Because	Power	Query	is	applicable
regardless	of	the	data	source	you	select,	and	because	the	data	transformation	step
is	better	done	in	Power	Query	than	in	DAX,	I	am	going	to	show	you	how	to	do	it
in	Power	Query.
Go	to	Edit	Queries	in	the	Power	BI	Desktop;

Figure	06-10:	Edit	Queries
	
Prepare	sub-tables
In	the	Power	Query	Editor	window,	right	click	on	Inventory	table,	and	create
a	reference	from	the	query:

https://radacad.com/reference-vs-duplicate-in-power-bi-power-query-back-to-basics

Figure	06-11:	Reference	from	the	existing	query	
If	you	like	to	learn	more	about	using	the	Reference	option,	read	this	article.
Reference	will	create	a	copy	of	the	existing	query,	with	Reference	to	the	existing
query,	which	can	now	have	extra	steps	in	it.	In	the	new	query,	right	click	on
Product	table	and	remove	all	other	columns.

Figure	06-12:	Removing	Other	Columns	
The	Inventory	table	should	now	look	like	this:

https://radacad.com/reference-vs-duplicate-in-power-bi-power-query-back-to-basics

Figure	06-13:	Inventory(2)	Table	with	only	Product	Column	
Right	click	on	the	Inventory	(2)	table	and	uncheck	the	Enable	load	option	for	it.
This	is	to	save	performance	and	avoid	loading	extra	tables	into	the	memory	of
Power	BI	Desktop.	Read	more	about	this	option	here.

Figure	06-14:	Disable	Load	for	the	Inventory(2)	table	
Do	the	same	process	now	for	the	other	two	tables,	Manufacturing	and	Sales:
●								create	a	reference	from	each	table	
●								only	keep	the	Product	table	and	remove	other	columns	
●								uncheck	the	enable	load	in	the	new	query	
You	should	now	have	the	new	three	tables	with	one	Product	column	only	in
each:

https://radacad.com/performance-tip-for-power-bi-enable-load-sucks-memory-up
https://radacad.com/performance-tip-for-power-bi-enable-load-sucks-memory-up

Figure	06-15:	Three	new	tables	all	disabled	load	
	
Set	all	column	names	to	be	the	same
The	next	step	is	to	make	sure	the	column	names	are	the	same.	Because	we	are
going	to	append	the	three	tables,	if	we	have	different	names,	it	would	create
extra	columns.	Names	should	be	an	exact	match.	Importantly,	note	that	Power
Query	is	a	case-sensitive	language	i.e.	product	is	different	from	Product	in	the
Power	Query	world.	In	our	sample	model,	the	two	tables	Inventory	and
Manufacturing	both	have	the	column	name	Product,	but	in	the	Sales	table,		it	is
called	Product	Name,	so	we	need	to	rename	it	to	Product.

Figure	06-16:	Renaming	Product	Name	column	in	Sales	(2)	to	be
Product.	All	columns	should	be	the	same	name.	
	
Append	all	three	tables
Append	all	three	tables	together	to	create	one	table	with	all	Product	values	in	it.
If	you	like	to	learn	more	about	Append,	read	my	article	here.

Figure	06-17:	Append	Queries	as	New	
In	the	Append	command	window,	select	Three	or	more	tables,	and	all	the	new
tables	in	it;

https://radacad.com/append-vs-merge-in-power-bi-and-power-query
https://radacad.com/append-vs-merge-in-power-bi-and-power-query

Figure	06-18:	Append	Three	or	more	tables	
The	output	of	the	append	would	be	one	table	including	all	Product	values.	You
can	rename	this	query	to	Product.

Figure	06-19:	Product	table	appended	the	result.	
Because	this	is	a	table	you	want	to	load	into	Power	BI	Desktop,	make	sure	that
the	Enable	Load	of	this	table	is	checked.	This	table	is	our	master	list,	including
all	product	values.	We’re	nearly	done	but	there	are	still	duplicate	values	in	the
table,	and	they	need	to	be	removed.
	

Remove	Duplicates
A	dimension	should	have	a	unique	list	of	values,	so	we	need	to	remove
duplicates	for	the	key	column	here:

Figure	06-20:	Remove	Duplicates	from	the	Product	table	
Before	using	Remove	Duplicates,	make	sure	to	read	this	article	about	important
tips	you	need	to	know	before	applying	Remove	Duplicates	in	Power	Query.	In	a
nutshell,	because	Power	Query	is	case-sensitive,	and	because	spaces	can	be
present	at	the	end	of	text	values,	and	other	special	characters	can	be	present,	you
still	might	end	up	with	duplicate	values,	so	this	is	how	you	would	remove
duplicates	in	few	steps:
●								Clean	transformation	
●								Trim	transformation	
●								Transform	to	Upper	Case	
●								Remove	Duplicates	
full	details	of	these	steps	are	written	here.

https://radacad.com/remove-duplicate-doesnt-work-in-power-query-for-power-bi-here-is-the-solution
https://radacad.com/remove-duplicate-doesnt-work-in-power-query-for-power-bi-here-is-the-solution

Figure	06-21:	Product	table	with	all	the	steps.	Master	List
created.	
Now	you	have	your	Product	shared	dimension	ready!	Repeat	this	process	for	any
other	shared	dimensions	with	the	relevant	columns.	However,	for	the	Date	table,
we	would	do	it	differently.
	
Date	Dimension
Because	the	date	table	is	one	of	the	most	common	tables,	and	it	has	one	record
per	day,	it	really	isn’t	related	to	which	values	happen	to	be	present	in	Sales,
Inventory,	or	other	tables.	There	are	general	practices	of	how	to	create	a	date
table.	Here	is	my	explanation	about	creating	a	general	purpose	date
dimension	for	Power	BI	using	Power	Query.
	
Best	Practice	Design:	Star	Schema	and	Shared	Dimensions
After	loading	the	tables	above,	you	can	create	one-to-many	relationship	single
directional	from	Product	and	Date	tables	to	all	other	fact	tables.	This	is	the	final
design	based	on	our	example;

https://radacad.com/create-a-date-dimension-in-power-bi-in-4-steps-step-1-calendar-columns

Figure	06-22:	Solution	Diagram	with	Date	and	Product	Shared
Dimensions	
The	above	design	uses	two	shared	dimensions,	and	avoided	all	challenges
mentioned:
●								It	doesn’t	need	both-directional	relationships	
●								It	doesn’t	need	many-to-many	relationships	
●								Product	and	Date	tables	are	master	tables	which	can	be	the	source	of	any

slicing	and	dicing	
To	make	sure	that	you	won’t	use	incorrect	columns	for	slicing	and	dicing,	make
sure	that	you	hide	Date	and	Product	columns	in	all	the	three	fact	tables	as	below:

Figure	06-23:	Hide	Date	and	Product	Column	in	Non-Dimension
tables.	
This	solution	can	now	provide	correct	reporting	capabilities	as	below;

Figure	06-24:	Testing	the	result	

Summary
Nothing	is	worse	than	a	bad	data	model	design.	These	designs	lead	to	poorly
designed	relationships	that	decrease	the	performance,	and	lead	to	a	need	to	write
a	lot	of	unnecessary	DAX	expressions	to	cover	for	the	poor	design.	At	the	end	of
the	day,	it	performs	slowly.	In	this	example,	you	learned	one	basic	but
fundamental	concept	used	in	designing	Power	BI	data	models.	Using	a	shared
dimension	in	your	model	will	avoid	both-directional	and	many-to-many
relationships.	You’ve	now	seen	how	easy	it	is	to	create	such	a	dimension.	This
same	method	can	always	be	used	in	your	Power	BI	data	models.
If	you	would	like	to	learn	more	about	other	basic	tips	and	tricks	for	data
modeling	in	Power	BI,	check	my	other	articles	at	http://radadcad.com.	Here	are
related	articles	as	a	reference	to	study	more:
	

●								What	is	the	Relationship	in	Power	BI?
●								What	is	the	Cardinality	of	the	Relationship?
●								What	is	the	Direction	of	the	Relationship?
●								Data	preparation;	First	and	Foremost	Important	task
●								What	is	a	Dimension	table	and	why	say	No	to	a	single	big	table
●								Basics	of	Modelling	in	Power	BI:	Fact	Tables
●								Combining	Dimension	Tables	in	Power	BI	using	Power	Query;

Foundation	of	Modeling	in	Power	BI
●								Star	Schema	and	How	to	Build	It
●								Build	Your	First	Star	Schema	Model	in	Action
●								Budget	vs.	Actual:	Zero	Complexity	model	in	Power	BI

	

http://radadcad.com
https://radacad.com/back-to-basics-power-bi-relationship-demystified
https://radacad.com/many-to-one-or-many-to-many-the-cardinality-of-power-bi-relationship-demystified
https://radacad.com/what-is-the-direction-of-relationship-in-power-bi
https://radacad.com/data-preparation-first-and-foremost-important-task-in-power-bi
https://radacad.com/basics-of-modeling-in-power-bi-what-is-a-dimension-table-and-why-say-no-to-a-single-big-table
https://radacad.com/basics-of-modeling-in-power-bi-fact-tables
https://radacad.com/combining-dimension-tables-in-power-bi-using-power-query-basics-and-foundations-of-modeling
https://radacad.com/power-bi-basics-of-modeling-star-schema-and-how-to-build-it
https://radacad.com/build-your-first-star-schema-model-in-action-power-bi-modeling-basics
https://radacad.com/budget-vs-actual-zero-complexity-model-in-power-bi

About	the	Author
	

Reza	Rad	is	a	member	of	the	Microsoft	Regional	Director	program,	an	Author,
Trainer,	Speaker,	and	Consultant.	He	has	a	BSc	in	Computer	engineering,	more
than	20	years’	experience	in	data	analysis,	BI,	databases,	programming,	and
development,	mostly	on	Microsoft	technologies.	He	has	been	a	Microsoft	Data
Platform	MVP	for	eight	continuous	years	(from	2011	till	now)	for	his	dedication
in	Microsoft	BI.	Reza	is	an	active	blogger	and	co-founder	of	RADACAD.	Reza
is	also	co-founder	and	co-organizer	of	Difinity	conference	in	New	Zealand.
His	articles	on	different	aspects	of	technologies,	especially	on	MS	BI,	can	be
found	on	his	blog:	https://radacad.com/blog.	He	has	already	written	a	number	of
books	on	MS	SQL	BI	and	is	currently	writing	more.	He	was	also	an	active
member	on	online	technical	forums	such	as	MSDN	and	Experts-Exchange,	and
was	a	moderator	of	MSDN	SQL	Server	forums,	and	is	an	MCP,	MCSE,	and
MCITP	of	BI.	He	is	the	leader	of	the	New	Zealand	Business	Intelligence	users
group.	He	is	also	the	author	of	very	popular	book	Power	BI	from	Rookie	to	Rock
Star,	which	is	free	with	more	than	1700	pages	of	content	and	the	Power	BI	Pro
Architecture	published	by	Apress.	He	is	an	International	Speaker	in	Microsoft
Ignite,	Microsoft	Business	Applications	Summit,	Data	Insight	Summit,	PASS
Summit,	SQL	Saturday	and	SQL,	user	groups.	And	he	is	a	Microsoft	Certified
Trainer.	Reza’s	passion	is	to	help	you	find	the	best	data	solution;	he	is	Data
enthusiast.

https://rd.microsoft.com/en-us/reza-rad
https://mvp.microsoft.com/en-us/PublicProfile/4030647?fullName=Reza%20%20Rad
https://radacad.com/
http://difinity.co.nz/
https://radacad.com/blog
https://www.meetup.com/New-Zealand-Business-Intelligence-User-Group/
https://radacad.com/online-book-power-bi-from-rookie-to-rockstar
https://www.apress.com/gp/book/9781484240144#otherversion=9781484240151

Chapter	7:	Data	Modeling	with	Relational	Databases
	
Author:	Thomas	LeBlanc
Data	Modeling	in	Power	BI	is	the	way	to	go	if	you	are	working	with	an	existing
relational	database.	If	not,	you	probably	want	to	create	a	dimensional	model	with
the	data	sources	available.	This	step	is	an	advancement	from	the	single	file	or
flat	table.	The	skills	required	for	this	option	include	an	understanding	of
relationships	between	data	and	the	abilities	to	clean	up	the	data	before	importing.
If	you	do	not	have	foreign	keys	in	the	relational	database,	Power	BI	will	assist
with	finding	relationships.	Power	BI	will	also	try	to	select	the	right	data	types	as
well	as	default	aggregations	during	import.	The	chapter	will	conclude	with	some
interacts	in	the	visuals	for	the	data	model,	like	the	hierarchy	in	a	dimension.

Data	Modeling
Why	is	Data	Modeling	important?	Power	BI	is	a	visualization	tool	that	has	an
analytical	database	engine	within	it.	The	path	forward	for	Microsoft	is	to	use	this
engine	for	most	forming	of	data	for	a	visualization	page.	If	someone	is	just
starting	to	use	Power	BI,	the	usual	path	is	to	start	importing	a	flat	file	or	table.
Once	satisfied	with	the	first	Power	BI	deployment,	a	new	one	is	created,	and	the
same	pattern	is	used.	The	developer	discovers	that	the	same	modeling	is	being
done	in	different	Power	BI	pbix	files.	The	thought	occurs	that	it	would	be	nice	to
have	one	model	and	connect	multiple	Power	BI	pbix	files	to	the	same	model.
This	saves	time	and	money.
Microsoft	has	now	started	to	allow	this	to	happen	after	deploying	the	model	in	a
pbix	to	the	Power	BI	service.	The	same	idea	has	been	available	with	SQL	Server
Analysis	Service	(SSAS).	Some	users	do	not	realize	they	have	the	SSAS	option,
but	it	has	been	around	for	years	with	the	Tabular	Model	and	a	decade	or	more
with	a	Multidimensional	Cube.	The	VertiPak	Engine	(Tabular)	started	in	Power
Pivot	and	migrated	to	Analysis	Services	before	finally	being	introduced	in
Power	BI.
If	the	user	is	not	coming	from	a	relational	database	background,	there	is	a
learning	path	for	getting	acclimated	with	Data	Modeling.	The	first	idea	is	to
understand	the	relationships	that	can	be	established	between	data.	The	data
usually	comes	from	a	table(s).	The	relational	database	may	have	foreign	keys	to
relate	tables	automatically.	The	next	idea	is	the	data	types.	A	numeric	is	different
than	a	text	and	is	different	from	a	date.	This	lead	to	the	data	dimension	used	for
Time	Intelligence.	There	are	some	advance	ideas	like	row	level	security	and
many-to-many	relationships,	but	those	have	to	be	learned	after	the	first	three.
	

Relational	Database
The	diagram	in	Figure	07-01	will	be	used	throughout	this	chapter.	The
underlying	database	is	structured	as	a	Dimensional	Model.	The	fact	table	is
Internet	Sales,	and	related	dimensions	are	Customer,	Sales	Territory,	Date,	and
Product.	This	is	the	star	schema	of	the	data	model,	and	it	becomes	a	snowflake
when	the	Subcategory	table	is	related	to	the	Product	table	with	another
relationship	between	Category	and	Subcategory.
	

Figure	07-01:	Internet	Sales	Data	Mart	Relationships
The	opposite	of	this	would	be	a	flat	table	or	file	with	the	data	columns	from
Customer,	Date,	Product,	Sales	Territory	plus	the	Category/Subcategory	data	in
the	same	row	as	the	sales	numbers.	The	problem	with	the	flat	file	is	someone
will	want	one	more	column	to	be	added	to	the	flattened	structure,	and	the	data
has	to	be	repopulate	all	over	again.	The	advantage	a	dimensional	model	database
is	the	data	is	already	in	the	tables	that	have	been	imported.	The	hidden	aspect
just	has	to	be	removed	later.	This	is	common	because	the	flatten	structure
probable	came	from	this	relational	structure	as	an	export.
	
Tables	and	Relationships
The	first	step	is	to	import	the	tables.	Importing	is	the	better	option	for
performance	than	DirectQuery	(Figure	07-02).		DirectQuery	relies	on	T-SQL
while	rendering	data	and	visuals	which	will	require	a	very	fast	system.
DirectQuery	also	does	not	allow	relating	tables	from	different	sources.	Importing
will	bring	the	data	into	the	analytical	engine	of	Power	BI.	Data	is	structured	in	a
column	store	architecture	with	compression.	This	structure	is	best	for	analytical
aggregations.
	

Figure	07-02:	Import	for	Data	Modeling
	
Figure	07-03	shows	the	Import	Wizard.	The	Fact	Internet	Sales	is	selected	along
with	the	related	dimension	tables.	The	dimension	tables	have	a	surrogate	key
(integer)	column	that	is	used	in	the	fact	table	for	foreign	key	relationships.	This
is	common	in	dimensional	model	databases.	In	the	lower	left	of	the	Navigator
screen,	there	is	a	button	labeled	“Select	Related	Tables”	to	assist	with	finding
tables	related	to	the	selected	table	by	a	foreign	key.	In	this	case,
FactInternetSales	is	related	to	DimCustomer,	DimDate,	DimProductSF,	and
DimSalesTerritory.	The	table	DimSubcategory	is	related	to	DimProductSF	while
DimCategory	is	related	to	DimSubcategory.
	

Figure	07-03:	Importing	Tables
	
Each	table	can	be	renamed	after	importing.	Or,	the	developer	can	click	the
“Edit”	button	before	loading	and	clean	up	the	selected	tables	before	importing.
This	edit	button	will	use	Power	Query	for	the	mashing.	Table	10-01	shows	the
tables	imported,	relationships,	and	the	columns	used	for	the	relationships.
	
Table Related	Table Column(s)
FactInternetSales DimCustomer CustomerKey
FactInternetSales DimSalesTerritory SalesTerritoryKey
FactInternetSales DimDate OrderDateKey(DateKey)
FactInternetSales DimProductSF ProductKey
DimProductSF DimSubcategory SubcategoryKey
DimSubcategory DimCategory CategoryKey

Table	10-01:	Related	Tables	and	Keys
	
NOTE:	If	there	is	more	than	one	relationship	between	two	tables	(Figure	07-04),
one	has	to	be	selected	as	active.	In	this	case,	the	OrderDateKey	is	the	active
relationship	between	FactInternetSales	and	DimDate.	The	inactive	relationship
can	be	used	in	DAX	formulas,	but	all	slicing	and	dicing	from	the	columns	in	the
Data	table	will	default	for	measures	as	OrderDate.
	

Figure	07-04:	Multiple	Relationships	between	Fact	and	Dimension
	
The	Edit	Relationship	screen	can	be	accessed	by	double-clicking	the	relationship
or	right-clicking	the	relationship	line	and	select	Edit	Relationship…	(Figure	07-
05)	from	the	menu.	Here,	the	Cardinality	and	Cross	Filter	Direction	can	be
changed.	All	dimension	relationships	to	fact	tables	are	one-to-many.	There	are
very	few	changes	to	Cardinality	needed	unless	you	are	an	expert	database
modeller.	There	are	some	cases	for	one-to-one	like	a	fact	for	Sales	and	a	related
dimension	for	Sales.
The	Cross	Filter	Direction	can	be	used	for	filtering	between	a	dimension	and	a

dimension	thru	a	fact	table.	The	other	case	would	be	for	many-to-many	when
there	is	a	bridge	table.
	

Figure	07-05:	Edit	Relationship
	
The	relationships	can	be	modified	in	another	screen	called	Manage	relationships,
which	can	be	accessed	under	the	Modeling	ribbon	while	the	Data	view	is
selected	like	Figure	07-06.
	

Figure	07-06:	Manage	relationships
	
Relationships	can	be	added	after	the	importing	of	tables.	This	is	done	in	either
the	Manage	relationship	screen	or	the	Model	view.	The	easiest	way	is	to	drag
and	drop	the	column	from	the	fact	table	to	the	dimension	table	(Figure	07-07).
	

Figure	07-07:	Create	Sales	Territory	Relationship
	
The	end	result	is	a	stacked	bar	chart	showing	a	sum	of	Sales	Amount	being

sliced	by	Martial	Status	from	the	Customer	table	while	diced	by	Color	from	the
Product	table.	This	is	three	different	tables	related	through	the	modeling	—	no
need	to	flatten	the	data	in	one	file	or	table.
	

Figure	07-08:	Slicing	and	Dicing	Internet	Sales	Amount
	
	

Data	Type
The	data	types	pull	over	well	with	a	relational	database.	There	are	a	few	things
you	should	be	aware	that	can	happen.	The	first	is	Default	Summarize.	Next,	the
category	might	not	be	assigned	for	a	column	like	a	geography.	The	last	item
would	be	the	assignment	of	the	incorrect	numeric	data	type.
The	Default	Summarize	is	assigned	to	numeric	columns.	Usually,	this	is	Count
for	integers	and	Sum	for	numeric	with	decimals.	This	works	fine	for	a	simple
summation	of	Sales.	But,	it	does	not	do	well	for	the	integer	columns	for
relationships.	Figure	07-09	shows	a	default	Count	on	the	ShipDateKey	in
FactInternetSales.	This	needs	to	be	set	to	“Don’t	Summarize”.	This	needs	to	be
repeated	on	all	columns	not	summarized.	The	new	Model	view	allows	to	select
multiple	columns	and	apply	the	No	Summerization	to	the	select	columns.
	

Figure	07-09:	Count	Default	Summarization	for	Key	Columns
	
Also,	the	Key	columns	in	the	fact	and	dimension	tables	should	be	hidden	from
the	visualization	canvas.	This	can	be	done	in	different	ways,	but	the	easiest	is	in
the	Model	view	and	multi-selecting	columns	in	a	table	by	holding	down	the
control	key	and	clicking	on	all	the	columns	to	hide.	Then,	right-click	and	select
the	Hide	in	Report	view	from	the	menu.
	

Figure	07-10:	Hide	Key	Columns
	
Even	though	the	Sales	Amount	is	set	as	Sum	for	Default	Summarization,	this
sum	would	be	better	managed	in	a	Measure.	Use	DAX	to	create	a	measure	by
right-clicking	on	the	table	(Internet	Sales)	in	Table	view	and	select	New	Measure
from	the	menu.	The	DAX	would	be	like	Figure	07-11.	Then,	change	the	Default
Summarization	and	Hide	the	SalesAmount	column.
	

Figure	07-11:	Internet	Sales	Measure
	
In	order	for	some	visualizations	to	work	with	a	column,	the	column	has	to	be
categorized	correctly.	This	is	typical	with	a	map	visualization.	Unless	the	visual
has	a	categorized	geography	column,	it	cannot	locate	the	place	to	place	a	sum	or
count.	Even	though	the	map	visual	sees	a	column	named	Country,	it	tries	to	auto
match.	Here,	it	is	better	to	assign	the	Category	to	this	column	like	Figure	07-12.
	

Figure	07-12:	Country	Category	for	Map	Visual
	
Numeric	Data	Types
The	last	item	is	about	numeric	data	types.	Money	data	types	can	be	formatted	as
currency,	but	data	type	should	be	fixed	decimal	number.	Scientific	numbers	can

use	the	Decimal	Number	data	type	while	all	integer	types	should	use	the	Whole
Number.	Figure	07-13	shows	a	list	of	data	types	in	Power	BI
	

Figure	07-13:	Data	Types
	
Remember,	there	is	a	separate	property	for	formatting	(Figure	07-14).	Use	this
property	when	making	the	data	look	like	it	fells	in	visualizations.	The	data	type
is	for	types	of	visuals,	but	formatting	makes	it	look	pretty	or	attractive.
	

Figure	07-14:	Column/Measure	Formatting
	

Additional	Fact	Table
When	modeling,	multiple	fact	tables	can	be	related	to	the	same	dimensions.	This
allows	a	slicer	like	Product	Category	to	show	a	summation	for	sales	related	to
internet	sales	as	well	as	reseller	sales.	Figure	07-15	shows	the	relationship	view
with	both	fact	tables	in	the	model.
	

Figure	07-15:	Multiple	Fact	Tables
	
The	measures	Reseller	Sales	and	Internet	Sales	can	be	viewed	by	the	same	visual
(Figure	07-16)	and	sliced	or	diced	by	columns	in	the	Product,	Sale	Territory	or
Date	dimension.	Reseller	Sales	has	an	active	relationship	to	the	date	table	by
OrderDateKey	just	like	the	Internet	Sales.	A	measure	could	also	be	created	to
sum	these	sums	together.	One	caution	is	that	adding	a	dimension	column	to	a
visual	from	the	Reseller	table	will	not	render	Internet	Sales	correctly	because
there	is	no	direct	relationship	between	Reseller	and	Internet	Sales.	Only	the
dimensions	with	a	relationship	to	both	fact	tables	can	be	used.	In	this	example,
that	is	Customer,	Product	(Category	and	Subcategory)	and	Date.

	

Many-to-Many	or	Bi-Directional	Filter
The	bi-directional	filtering	can	be	used	in	some	Many-To-Many	scenarios.	One
used	in	this	example	will	use	the	Sales	Reason	thru	a	bridge	table	to	relate
multiple	possible	sales	reasons	for	each	sales	line	item.	The	New	Column
modeling	feature	will	be	used	in	the	FactInternetSalesReason	and
FactInternetSales	table	to	concatenate	Sales	Order	Number	and	Sales	Line	Item
Number.	This	is	in	order	to	have	one	column	for	a	relationship.	It	is	called
SalesNum	in	the	example.
	

Figure	07-17:	Many-To-Many	Relationship
	
The	last	step	would	be	to	change	the	relationship	to	Both	in	the	relationship
property	Directional	cross	filter.	The	will	enable	the	Sales	Reason	table	to	filter
Internet	Sales	thru	the	bridge	table	in	Figure	07-17.
	

Hierarchies
Hierarchies	can	be	modelled	for	dimension	tables.	The	columns	used	in	a
hierarchy	have	to	be	in	one	table.	In	this	example,	the	Category	and	Subcategory

are	not	in	the	Product	table	but	are	related	thru	keys	(snowflake).	Adding	New
Columns	to	the	Product	table	can	be	done	because	the	tables	are	related.	The	can
be	done	with	the	RELATED()	DAX	function	like	Figure	07-18.
	

Figure	07-18:	RELATED()	DAX	Function
	
Another	example	of	a	hierarchy	is	in	the	Sales	Territory	table.	It	is	hard	for	an
end	user	to	remember	the	order	of	the	columns,	so	creating	a	Sales	Territory
hierarchy	solves	this.	Start	by	right-clicking	on	the	topmost	item	Group	and
select	New	Hierarchy	from	the	menu.	Then	add	Country	and	Region	in	that
order.	The	last	step	might	be	hiding	the	individual	columns	from	the	report	view
and	leaving	just	the	hierarchy.	This	hierarchy	has	been	renamed	to	Sales
Territory	(Figure	19).
	

Figure	07-19:	Y-Q-M-D	and	Sales	Territory	Hierarchy
	

Additional	Comments
Multiple	Data	Sources
The	Data	Modeling	in	Power	BI	does	allow	multiple	data	sources.	The	tables	or
files	can	be	related	as	previously	shown	only	by	using	Import	(cannot	use
DirectQuery).	The	tables	do	have	to	have	a	common	column	of	the	same	data
type.	There	is	no	support	for	multiple	column	relationships	in	the	model.	But,
you	can	use	Power	Query	to	relate	data	from	multiple	columns.	The	output
would	be	one	merged	table	and	not	two	tables	with	the	relationships	shown.
	
Sort	by	Different	Columns
The	ability	to	sort	by	a	different	column	comes	from	the	Modeling	tab	while	in

the	Data	view.	The	Date	table	column	EnglishMonthName	can	be	sorted	by
MonthNumberOfYear	rather	than	alphabetically	like	Figure	07-20.
MonthNumberOfYear	can	be	hidden	from	the	report	view	if	not	needed	for
analysis.
	

Figure	07-20:	Sort	By	Column
	

Summary
Data	Modeling	is	a	skill	that	is	very	valuable	for	the	Power	BI	Architect	or
Developer.	Once	mastered,	it	can	be	used	in	Power	BI	as	well	as	Analysis
Services	and	PowerPivot.	The	relational	database	design	as	a	star/snowflake
schema	is	best	for	modeling.	Using	a	normalized	database	is	fine;	there	are	just
more	items	to	manage.	Remember,	proper	formatting	of	data	types	leads	to	a
cleaner	design.	The	auto	summations	might	not	be	what	is	needed	for	integer
columns	that	are	surrogate	keys	for	relationships.	The	one-to-many	relationship
is	the	most	common	for	a	dimension	table’s	join	to	a	fact	table.	The	many-to-
many	have	to	be	occasionally	used	but	use	the	bi-directional	filtering	sparingly.
Loading	the	model	to	the	service	for	use	with	other	Power	BI	pbix	files	is	the
ultimate	goal.
	

About	the	Author

Thomas	LeBlanc	(Microsoft	Data	Platform	MVP)	is	a	Data	Warehouse	and
Business	Intelligence	Architect	in	Baton	Rouge,	LA	and	uses	his	30+	years	in	IT
to	develop	OLTP	systems	with	normalized	databases	for	high-performing	T-SQL
while	migrating	data	for	reporting	to	dimensional	data	marts.	He	is	an	expert	in
SSIS,	SSAS,	SSRS,	Power	BI,	and	Excel.	As	a	PASS	volunteer,	he	is	past	chair
of	Excel	BI	and	Data	Arch	VCs	and	is	active	in	the	Baton	Rouge	Analytics	and
SQL	Server	User	groups	as	well	as	SQLSaturday	in	Baton	Rouge.	Speak
conferences	include	PASS	Summit,	VSLive,	Live360,	and	SQLSaturday.	Blogs	-
TheSmilingDBA.BlogSpot.com	and	Thomas-LeBlanc.com

Part	III:	DAX	and	Calculations	in	Power
BI

Chapter	8:	Up	and	Running	with	DAX	as	Quick	as
Possible
	
Author:	Ike	Ellis
In	this	chapter	we'll	get	you	started	with	the	80%	of	DAX	that	you	need	to
know.		You'll	learn	how	to	use	measures	and	calculated	columns	to	add	amazing
value	to	your	Power	BI	reports.		You'll	start	easy	with	SUM	and	AVERAGE	and
then	finish	with	the	harder	topics	like	CALCULATE,	Time	Intelligence,
FILTER,	ALL,	variables,	debugging,	and	troubleshooting.
	

Introduction
	

Figure	08-01:	Answering	an	interview	question
Imagine	sitting	across	from	these	people	in	a	job	interview	being	asked	“Do	you
know	DAX?”		If	you	want	to	answer	yes	to	that	question,	this	is	the	chapter	for
you.		What	would	you	have	to	know	in	order	to	answer,	“Yes,	I	know	DAX”?	
You	need	to	know	these	functions:		SUM,	AVERAGE,	MIN,	MAX,	COUNT,
COUNTROWS,	CALCULATE,	and	VARIABLES.
You	need	to	know	about	the	Row	Context	and	the	Filter	Context.
You	would	need	to	learn	best	practices	related	to	formatting,	white	space,	time
intelligence,	X	vs	nonX	functions	(SUM	vs	SUMX),	DAX	Studio,	and	basic
troubleshooting.
This	chapter	will	get	you	started	on	this	journey	and	will	make	other	resources,
like	the	online	documentation,	much	easier	to	read.

Your	First	DAX	Expression
1.	 Open	up	the	sample	notebook.		Explore	the	data	in	it	using	the	pane	on	the

right.		
2.	 Under	Sales.OrderDetails,	click	the	ellipsis	button	next	to	it	and	click

“New	Column.”		When	you	do	that,	you	should	the	following	image	at	the
top	of	the	page:

Figure	08-02:	Default	Calculated	Column
3.	 Delete	“Column	=	“	and	replace	it	with	the	following	code:

Order	Line	Total	=	'Sales	OrderDetails'[qty]	*	'Sales	OrderDetails'[unitprice]
	

4.	 Now	add	the	new	column	you	created	(Order	Line	Total)	to	a	Table	visual,
along	with	orderid,	productid,	qty,	and	unitprice.

Your	table	should	look	like	this:

	
Figure	08-03:	Creating	a	table	with	qty,	unitprice,	and	Order	Line	Total
You	did	it!		You	just	created	your	first	DAX	expression!		And	you	can	see	that
it’s	working.		For	instance,	for	orderid	10248,	you’ll	see	that	you	ordered	12	of
productid	11.		Each	unit	is	$14.		12	*	14	=	168.		The	calculated	column	is
working!
Calculated	columns	create	one	value	per	record	in	the	source	tables.		Calculated
columns	can	only	reference	columns	that	exist	in	a	single	table.		They	cannot
reference	columns	that	exist	in	other	tables.

Your	Second	DAX	Expression
Now	let’s	create	a	measure.		A	measure	is	a	calculation	that	is	created	when	it	is
requested	in	a	visual.	

1.	 Create	a	new	page	in	the	Power	BI	workbook	by	clicking	on	the	New
Page	Button.		We	will	use	this	page	shortly.

Figure	08-04:	The	New	Page	Button
2.	 In	the	Measures	table	on	the	right,	click	the	ellipsis	button	and	then	click

“New	Measure.”

Figure	08-05:	The	New	Measure	Button
3.	 Replace	the	text	that	appears	in	the	formula	bar	with	this	DAX	expression:

Total	Sales	=	SUM('Sales	OrderDetails'[Order	Line	Total])

This	measure	is	named	Total	Sales.		It	will	sum	the	Order	Line	Total	column	that

you	created	in	the	last	exercise.		The	measure	will	create	that	sum	whenever	it	is
placed	in	a	visual.	

4.	 On	the	new	page	that	you	created	in	the	Power	BI	Project,	click	on	a
stacked	bar	chart	from	the	Visuals	pane	to	add	it	to	the	canvas.	

5.	 From	the	Date	table,	drag	year	to	the	Axis	portion	of	the	chart.		Drag	Total
Sales	to	the	Value	portion	of	the	chart.			Your	fields	pane	should	look	like
the	image	below:

Figure	08-06:	The	New	Fields	Pane
6.	 Your	stacked	column	chart	should	look	like	this:

Figure	08-07:	The	Stacked	Column	Chart	with	Total	Sales
7.	 Play	with	this	chart.		Keep	Total	Sales	as	the	Value,	but	change	the	field	in

the	Axis	portion.			You	might	try	Production	Category.categoryname,	
Sales	Customers.region,	Production	Products.productname.

8.	 Notice	that	no	matter	which	field	you	put	in	the	Axis,	the	breakdown
always	appears	and	calculates	for	you.		Also	notice	that	it	always	totals

the	same:	$1,354,458.59.		The	calculation	is	always	consistent,	no	matter
how	you	choose	the	break	it	down.

You	did	it!		You	just	created	your	first	measure.	
DAX	Expressions	always	breakdown	like	the	following	diagram:

Figure	08-08:	The	DAX	Expression	Breakdown
No	matter	how	complicated	a	DAX	expression	can	be,	they	will	have	the	parts
broken	apart	above.		Sometimes	it’s	helpful	to	separate	those	parts	in	your	head
as	you	try	to	parse	difficult	to	read	expressions.
There	are	all	kinds	of	easy	to	use	expressions,	some	of	which	will	be	familiar	to
you	if	you	already	know	Microsoft	Excel	or	T-SQL.		Here	are	a	few	examples:
●								SUM
●								AVERAGE
●								MIN
●								MAX
●								COUNT
●								COUNTROWS
●								DATEDIFF
●								DATEADD

Another	Example
Let’s	try	it	again	with	a	different	example.		I	will	give	you	fewer	instructions	this
time	and	no	visuals	so	you	can	get	some	practice	in.

1.	 Create	a	calculated	column	on	the	Sales	Orders	table.		Use	the	following
expression:

Days	To	Ship	=	DATEDIFF('Sales	Orders'[orderdate],	'Sales	Orders'[shippeddate],DAY)

2.	 This	calculated	column	takes	the	date	between	orderdate	and	shippeddate
in	day	increments.		It	calculates	how	long	it	took	to	ship	something.

3.	 Create	a	table	and	place	the	orderid,	orderdate,	shippeddate,	and	Days	To
Ship	columns	in	it.		Does	the	data	look	correct	to	you?

Now	that	we	created	a	calculated	column,	let’s	figure	out	our	average	days	to
ship	something.

1.	 In	the	Measures	table,	create	a	new	measure.		Use	the	following	code:
Average	Days	to	Ship	=	AVERAGE('Sales	Orders'[Days	To	Ship])

2.	 Add	this	measure	to	a	stacked	bar	chart.		Put	it	in	the	Values	section.
3.	 Add	different	fields	to	the	Axis	section	of	the	visual.		Can	you	see	how

long	it	takes	to	ship	something	to	particular	regions?		How	about	by	Year
and	Month?

By	now	you’re	getting	all	kinds	of	experience	with	calculated	columns	and
measures.			You	should	feel	accomplished.		You	are	well	on	your	way	to
understanding	DAX.

Calculated	Tables
You	can	also	use	DAX	to	create	calculated	tables.		Look	at	the	definition	of	the
Dates	table.		You	should	see	a	DAX	expression	like	the	following:
Dates	=	CALENDAR("1/1/2000",	"12/31/2016")
This	DAX	expression	creates	a	dates	table	from	1/1/2000	to	12/31/2016.		It	will
create	a	row	for	every	date	between	those	two	dates.		It	will	also	break	down	the
date	into	a	hierarchy	of	Year,	Quarter,	Month,	and	Day.		It	will	also	make	time
intelligence	operations	like	Year	to	Date	and	Month	to	Date	calculations	much
easier.		We’ll	see	that	a	little	later.

The	CALCULATE	Function
This	function	is	one	of	the	most	important	DAX	functions	to	learn.		It	can	be
complicated	to	understand	for	people	who	are	learning	Power	BI	and	DAX.		It	is
sometimes	easier	to	talk	about	what	DAX	is	doing	when	it	calculates	a	measure
for	you,	and	then	show	how	CALCULATE	can	manipulate	the	natural	behaviour
of	DAX	and	Power	BI.			There	is	a	different	chapter	in	this	book	about
Contexts.		I	would	encourage	you	to	read	that	chapter.		This	is	a	brief	summary
of	much	of	the	information	in	that	chapter.

1.	 In	the	Power	BI	Workbook,	examine	the	three	pages	called	Filter	Context
1,	Filter	Context	2,	and	Filter	Context	3.

2.	 All	three	pages	have	different	visuals	break	down	the	exact	same	total:	the
sum	total	for	freight	charges	over	the	lifetime	of	the	company.		Notice	that
the	total	freight	charged	by	this	company	is	$64,942.69.	

3.	 On	the	page	Filter	Context	One,	Click	on	2008	in	Column	Chart.		Notice
how	the	values	in	the	table	change	to	only	include	the	totals	from	2008.

4.	 In	the	bottom	visual,	click	on	the	values	for	USA.		Notice	how	the	other
two	visuals	change	what	they	display.		These	visuals	are	interacting	with
each	other.

5.	 On	the	page	titled	Filter	Context	3,	you	will	see	a	Map	visual,	next	to	a
Column	visual.				Click	on	the	bubble	for	USA	and	notice	how	the	Column
visual	changes.		Click	on	one	of	the	columns	in	the	Column	visual	and
notice	how	the	map	is	changing.

Figure	08-09:	The	Column	Chart	affecting	the	Map	visual
What	is	going	on	here?		Power	BI	is	calculating	the	total	freight	for	you	based	on

how	you	are	interacting	with	these	visuals.		It	is	calculating	the	total	on	the	fly
and	right	in	front	of	you.		It	is	very	quick!			When	the	user	interacts	with	visuals,
Power	BI	is	telling	DAX	what	the	filter	context	is.
The	CALCULATE	function	overrides	the	filter	context	and	makes	the	visual
display	exactly	what	data	you	want	it	to	display.		Follow	these	steps	to	see	it	in
action:

1.	 In	the	measures	table,	create	a	new	measure.
2.	 Replace	the	code	with	the	following:

Total	Sales	(Beverages)	=	CALCULATE
(
								SUM('Sales	OrderDetails'[Order	Line	Total])
				,			'Production	Categories'[categoryname]	=	"Beverages"
)

3.	 The	measure	overrides	the	filter	context	as	it	relates	to	Production
Categories.categoryname.		No	matter	what	category	we	click	in	the	filter
context,	we	will	always	get	the	sum	of	Sales	OrderDetails.Order	Line
Total	for	beverages.		Let’s	see	this	in	a	visual.

4.	 Add	a	table	visual	to	a	new	page.		Add	Year,	Total	Sales,	and	Beverages
Total	Sales	to	the	table.		It	should	look	like	the	image	below

Figure	08-10:	The	Total	Sales	–	Beverages	measure	compared	to	the	Total
Sales	measure

5.	 Notice	how	the	Total	Sales	–	Beverages	measure	is	a	smaller	amount	than
Total	Sales.		This	is	because	the	CALCULATE	function	is	creating	a	new
the	filter	context	for	our	new	measure	where	the	categoryname	is	always
“Beverages”.

6.	 Now	create	a	new	table	visual.		Add	categoryname	(found	in	the
Production	Categories	table),	Total	Sales	–	Beverages,	and	Total	Sales.		
Your	visual	should	look	like	the	image	below:

Figure	08-11:	The	Total	Sales	–	Beverages	measure	compared	to	the	Total
Sales	measure	by	categoryname

7.	 Notice	how	no	matter	which	category	is	specified	in	the	filter	context,	the
total	amount	is	always	the	same	for	Total	Sales	–	Beverages.		This	is
because	the	CALCULATE	function	is	overriding	the	filter	context.

8.	 Now	add	Year	as	the	first	value	in	Values	section.		Your	visual	will	look
like	this:

Figure	08-12:	Adding	Year
9.	 You	can	see	that	though	we	are	overriding	the	filter	context	as	it	relates	to

the	categoryname,	we	are	not	overriding	the	filter	context	for	date	or	for
any	other	column.		We	are	only	overriding	it	for	one	particular	column	and
value.

If	we	were	to	look	at	the	online	documentation	for	the	CALCULATE	function,
we	would	immediately	see	a	syntax	description	that	looks	like	this:

Figure	08-13:	CALCULATE	in	books	online
The	online	documentation,	as	of	this	writing,	is	found	here:
https://docs.microsoft.com/en-us/dax/calculate-function-dax
Notice	how	the	CALCULATE	function	can	take	more	than	one	filter,	ie	filter1
and	filter2.		It	also	has	a	“…”	at	the	end	of	the	definition.		This	is	the

https://docs.microsoft.com/en-us/dax/calculate-function-dax

documentation	telling	you	that	you	can	apply	more	than	one	filter	override	in	the
CALCULATE	function.		You	can	override	a	lot	of	different	column	values.	
Let’s	see	what	it	looks	like	to	override	two	columns.

1.	 In	the	Measure	table,	create	a	new	measure.
2.	 Replace	the	code	with	the	code	below
Total	Sales	(Beverages	in	USA)	=	CALCULATE(
												sum('Sales	OrderDetails'[Order	Line	Total])
												,	'Production	Categories'[categoryname]=	"Beverages"
												,	'Sales	Customers'[country]	=	"USA"
)
3.	 This	measure	uses	CALCULATE	to	override	both	the	category	name

(forcing	Beverages)	and	country	(forcing	USA).
4.	 We	name	the	measure	Total	Sales	–	Beverages	in	USA	to	tell	the	user	of

the	report	that	we	are	overriding	their	wishes	here.
5.	 Now	add	a	table	to	a	page	and	add	year,	categoryname,	Total	Sales,	Total

Sales	–	Beverages,	and	Total	Sales	–	Beverages	in	the	USA
6.	 Play	with	the	filter	context	and	see	how	different	filters	affect	these	three

measures	differently.		You	should	notice	similar	things	with	how
CALCULATE	is	overriding	the	filter	context.

I	know	this	can	be	difficult	to	understand.		With	practice	and	patience,	you	can
learn	exactly	what	Power	BI	is	doing	here.		Often	it	just	takes	trying	to	apply	it
with	real	world	problems	and	working	through	it	to	find	a	solution.		As	you
practice	with	this,	you	will	understand	this	better	and	better.		We	will	use
CALCULATE	a	few	times	more	before	this	chapter	is	over.	

Variables	and	Return
DAX	calculations	can	be	multiple	lines.		They	do	not	have	to	be	a	single	line.	
Using	multiple	lines	can	make	DAX	far	easier	to	read	and	troubleshoot.				When
using	variables	and	the	RETURN	statement,	you	must	use	multiple	lines.

1.	 In	the	measures	table,	create	a	new	measure.
2.	 Replace	the	code	with	the	following:
Total	Sales	For	Customers	with	Minimum	Order	Count	=
VAR	MinimumOrderCount	=	5
VAR	CustomersWithMinimumOrders	=	CALCULATE
								(
								sum('Sales	OrderDetails'[Order	Line	Total])
								,	FILTER('Sales	Customers',	[Number	of	Orders]	>	MinimumOrderCount)
)
RETURN	CustomersWithMinimumOrders
3.	 This	measure	is	multiple	lines.		It	declares	two	variables.		The	first

variable	is	titled	MinimumOrderCount.		It	has	an	assigned	value	of	5.
4.	 The	second	variable	is	titled	CustomersWithMinimumOrders.		It	uses	the

CALCULATE	function	to	only	aggregate	Order	Line	Total	for	customers
that	meet	the	minimum	order	count.

a.	 This	can	be	hard	to	read	if	you’re	new	to	DAX	and	CALCULATE.	
In	this	case,	the	second	argument	of	the	CALCULATE	function	has
a	nested	function	inside	of	it.			That	nested	function,	FILTER,	is
filtering	the	Sales	Customers	table.		The	FILTER	function	is
filtering	out	all	customers	that	have	less	than	5	orders.		Then
CALCULATE	is	totaling	the	Order	Line	Total	for	just	these
customers.

b.	 The	net	effect	of	this	is	that	we	are	getting	a	Total	Sales	calculation
for	only	our	repeating	customers	that	have	given	us	the	minimum
number	of	five	orders.		For	this	business,	repeat	customers	defined
like	this	are	interesting	to	the	stake	holders.		They	are	categorized
separately.

5.	 Add	this	measure	to	a	table	visual	next	to	the	Total	Sales	measure	to	see
how	the	number	are	different.

Figure	08-14:	Multiple	line	DAX	calculation	in	a	table	visual
6.	 Having	a	multiline	DAX	calculation	can	help	with	troubleshooting.	

Change	the	value	of	the	MinimumOrderCount	variable	from	5	to	2.		And
then	change	it	to	7.		Then	change	it	to	10.

a.	 You	can	see	the	value	change	as	you	change	the	definition.		This	can
help	you	discover	the	real	order	count	that	you	care	about.			The
variable	title	also	helps	you	document	why	the	number	5	is
important	to	you.		Of	course,	you	can	just	embed	the	number	5
inside	the	CALCULATE	statement,	but	then	you’ve	lost	intent.	
Why	are	you	putting	5	there?		Variables	make	code	easier	to	read
and	maintain	over	time.

7.	 The	RETURN	statement	does	not	need	to	return	the	last	variable.		Change
the	RETURN	statement	to	return	MinimumOrderCount	instead	of
CustomersWithMinimumOrders.		The	code	would	look	like	this:

Total	Sales	For	Customers	with	Minimum	Order	Count	=
VAR	MinimumOrderCount	=	5
VAR	CustomersWithMinimumOrders	=	CALCULATE
								(
								sum('Sales	OrderDetails'[Order	Line	Total])
								,	FILTER('Sales	Customers',	[Number	of	Orders]	>	MinimumOrderCount)
)
RETURN	MinimumOrderCount

8.	 If	you	have	a	complicated,	multi-step	formula,	you	can	use	RETURN	to
verify	that	each	step	is	performing	the	way	you	expect	it	to.	

Time	Intelligence	–	YTD
1.	 Create	a	new	measure	in	the	measures	table.
2.	 Replace	the	code	with	the	following:
YTD	Total	Sales	=	TOTALYTD
(
				SUM('Sales	OrderDetails'[Order	Line	Total])
				,	Dates[Date].[Date]
)
3.	 Similar	to	the	CALCULATE	function,	the	TOTALYTD	function	also

manipulates	the	filter	context.		It	creates	a	running	total	for	the	year,	no
matter	which	dates,	months,	quarters,	or	years	have	been	selected.

4.	 Add	a	matrix	visual	with	Month	on	the	rows	and	Year	on	the	columns.	
Add	YTD	Total	Sales	as	the	values.		It	should	look	like	this:

Figure	08-15:	TOTALYTD	in	a	measure
5.	 You	can	clearly	see	the	total	is	accumulating	as	the	months	progress.		You

can	see	it	reset	when	the	year	resets.		The	DAX	here	is	deceptively	simple,
but	very	powerful!		If	you	wrote	something	similar	in	other	languages,	it
would	involve	a	lot	of	complicated	looping	and	tallying,	but	DAX	does
this	for	you	as	long	as	you	have	a	Dates	table.		The	Dates	table	is
necessary	for	all	functions	that	use	time	intelligence.		There	are	similar
functions	for	month	to	date	and	quarter	to	date.

Time	Intelligence	–	PREVIOUSMONTH
1.	 Create	a	new	measure	in	the	measure	table.
2.	 Replace	the	code	to	the	following:
Total	Sales	Previous	Month	=	CALCULATE
(
				sum('Sales	OrderDetails'[Order	Line	Total])
				,	PREVIOUSMONTH(Dates[Date])
)
3.	 This	function	overrides	the	filter	context	to	say	that	no	matter	which

month	is	selected,	give	the	value	for	the	previous	month.	
4.	 Add	a	Matrix	visual	with	Month	as	the	Row	and	Year	as	the	Column.		Put

Total	Sales	and	Total	Sales	Previous	Month	in	the	values.		Your	visual
should	look	like	this:

Figure	08-16:	PREVIOUSMONTH	in	a	measure
5.	 CALCULATE	and	PREVIOUSMONTH	overrides	the	filter	context	to

display	the	value	for	the	previous	month	selected.		For	instance,	in	August
2006,	you	can	see	that	the	current	value	is	$26,609.40,	while	the	previous
month	value	is	$30,192.10.

X	vs	Non-X	Functions
You	may	have	noticed	that	there	are	a	lot	of	functions	that	have	the	same	name,
but	are	only	different	because	one	has	an	X	at	the	end	of	it.		Some	examples	are
SUM,	SUMX,	COUNT,	COUNTX,	MIN,	MINX,	and	so	forth.		What	are	the
differences	between	these	functions?	
The	X	functions	are	what	are	called	iterator	functions.		They	are	important	where
the	value	is	important	in	the	context	of	a	row.			It	works	row	by	row.		SUMX	has
awareness	of	rows	in	a	table,	hence	can	reference	the	intersection	of	each	row
with	any	columns	in	the	table.		SUMX	will	add	values	as	it	relates	to	the	entire
row	that	is	iterating.
SUM	is	an	aggregator	function.		It	works	like	a	measure,	calculating	based	on
the	current	filter	context.
The	following	is	an	example	of	a	SUMX	function:
Total	Sales	SUMX	=	SUMX(
				'Sales	OrderDetails'
				,	'Sales	OrderDetails'[qty]	*	'Sales	OrderDetails'[unitprice]
)

Notice	that	it	multiplies	qty	*	unitprice,	row	by	row,	and	then	sum	the	results.		If
you	added	this	code	to	a	measure	and	put	it	in	a	visual,	you	would	notice	that	the
total	is	the	expected	$1,354,458.59.		If	we	attempted	to	create	this	function	using
SUM,	we	would	get	a	syntax	error.		SUM	can	only	operate	on	one	column.		
After	fiddling	with	it,	we	might	come	up	with	something	like	this:
BadMeasure	=	(SUM('Sales	OrderDetails'[unitprice])	*
Sum('Sales	OrderDetails'[qty]))
	
This	measure	takes	the	total	number	of	qty	in	OrderDetails	and	multiplies	it	with
the	total	UnitPrice.		This	is	very	bad	logic	and	results	in	$2,899,457,198.47.	
This	result	is	very	wrong.
SUMX	is	necessary	because	it	preserves	the	row	value	and	ties	the	correct	qty
with	the	correct	unitprice.

Best	Practice:	Organize	your	code
This	author	recommends	keeping	measures	together	in	one	table.		You	may	want
to	create	more	than	one	table	for	your	measures.		In	my	experience,	you	will	end
up	having	dozens	of	measures	in	your	Power	BI	model.		It	might	be	difficult	to
find	a	measure	if	you	don’t	practice	organization.

Best	Practice:	Naming	Columns	&	Measures
When	you	name	columns	and	measures,	obey	the	following	rules:
•								Feel	free	to	use	spaces
•								Avoid	acronyms
•								Make	names	terse,	but	descriptive

•								Makes	Q	&	A	easier	to	use
•								In	formulas,	reference	table	names	for	calculated	columns	and	do	not

reference	table	names	for	measures,	so	you’ll	know	the	difference
These	rules	will	make	it	easier	to	maintain	your	Power	BI	project,	data	model,
and	reports.

Best	Practice:	Formatting
Power	BI	and	DAX	ignore	white	space.		That	means	you	can	freely	use
whitespace	to	make	your	code	easy	to	read	and	easy	to	navigate.

Figure	08-17:	DAX	ignores	white	space
DAX	Expressions	can	have	lots	of	parentheses	and	square	brackets.		Please	use
white	space	to	control	help	this.		Above	is	a	good	example	of	a	properly
formatted	DAX	expression.			You	can	also	use	the	website	DaxFormatter.com	to
help	you	format	your	DAX	expressions.

Other	Resources
The	following	books	can	help	you	along	your	DAX	journey:

Figure	08-18:	Great	DAX	books
DAX	Studio	is	a	great	tool	for	learning	DAX	and	writing	DAX	expressions.		It
was	the	brainchild	of	one	of	the	authors	of	one	of	the	books	above,	Darren
Gosbell,	Marco	Russo	and	Alberto	Ferrari.		Learning	this	tool	is	essential	for	the
budding	DAX	developer

Figure	08-19:	DAX	Studio
Those	two,	affectionately	called	The	Italians	by	the	Power	BI	community,	also

created	a	website	called	DAX.guide.		This	website,	along	with	the	DAX
documentation	will	also	accelerate	your	journey	to	DAX	mastery.
	
	
	

Summary
This	chapter	helped	you	begin	your	journey	to	answer	the	job	interview	question
“Do	you	know	DAX?”		It	covered	the	essential	elements	of	DAX.		From	here
you	can	practice	and	read	your	way	to	knowing	all	that	you	need	to	know	to
answer	“Yes!		I	know	DAX	really	well!”
	

About	the	Author

With	over	18	years	of	experience	in	databases	and	a	current	Microsoft	MVP,		Ike
has	been	Microsoft	certified	since	the	beginning,	currently	holding	an	MCDBA,
MCSE,	MCSD,	and	MCT.	Ike	is	the	General	Manager	of	Data	&	AI	for
Solliance.		We	have	a	full	team	of	cloud	data	engineers	and	data	scientists.			We
specialize	in	building	highly	scalable	data	solutions	for	any	size	of	organization.
Ike	is	a	partner	in	Crafting	Bytes,	a	San	Diego	software	studio	and	Data
Engineering	group.		We	build	software	and	BI	solutions	for	companies	all
around	the	country.

In	2010,	Ike	founded	the	San	Diego	Tech	Immersion	Group	(SDTIG).	It	has
grown	to	be	the	largest	user	group	in	San	Diego	with	over	125	active	members
including	three	other	Microsoft	MVPs.	It	is	a	technical	book	club	that	reads	a
book	on	a	significant	technical	topic.		Recent	topics	include	Linux	on	Microsoft
Azure,	Angular	2/TypeScript,	Data	on	Azure,	Python	for	Data	Scientists,	and
Docker/DevOps.			In	July	2018,	SDTIG	started	a	track	on	Docker/Kubernetes.	
We	will	start	a	new	track	on	Databricks/Spark	in	November	2018.		You	can	join
virtually	and	watch	the	youtube	live	stream.		www.sdtig.com.

Ike	leads	the	San	Diego	Power	BI	and	PowerApps	user	group	that	meets
monthly.	Ike	is	also	the	leader	for	San	Diego	Nerd	Beers,	a	monthly	software
development	social	group	and	the	co-chairman	of	the	San	Diego	Software
Architecture	Group,	a	round-table	of	software	leaders	in	San	Diego.	He	also	co-
chairs	the	San	Diego	Software	Architecture	Group	with	Azure	MVP	Alumni
Scott	Reed.	

In	2015,	he	co-wrote	Developing	Azure	Solutions	for	Microsoft	Press.		He
contributed	all	sections	that	related	to	the	Microsoft	Data	Platform.		The	second
edition	will	be	released	in	2018.

For	more	information,	see	http://www.ikeellis.com

http://www.ikeellis.com

Chapter	9:	Power	BI	is	Not	the	Same	as	Excel
	
Author:	Matt	Allington
Power	BI	and	Excel	are	similar	in	what	they	can	be	used	for,	but	they	are	not	the
same	type	of	tool.	It	can	be	deceptive	because	both	tools	seem	to	do	similar
things	using	a	similar	approach.		For	example,	Excel	has	a	functional	language
that	is	used	for	calculations,	and	Power	BI	also	has	a	functional	language	(called
DAX).		But	that	doesn't	mean	Excel	formulas	are	exactly	the	same	as	DAX
formulas	(although	they	can	sometimes	be	similar).		In	this	chapter	I	will	cover
the	differences	you	need	to	be	aware	of	to	start	your	Power	BI	journey,
particularly	when	you	come	from	an	Excel	background.

Introduction
I	have	been	teaching	people	how	to	use	Power	BI,	Power	Pivot	and	Power	Query
since	2014	(more	than	5	years	at	this	writing).		Most	of	the	people	I	have	taught
(although	not	all)	have	come	from	an	Excel	background.		That	is	to	say	that	they
have	spent	most	of	their	business	life	using	Microsoft	Excel	as	their	data
analytics	tool	of	choice.		If	you	are	reading	this	chapter,	then	chances	are	you	are
just	the	same.	You	love	Excel	but	also	see	potential	to	take	your	reporting	and
analytics	to	the	next	level	using	Power	BI.
Over	my	time	teaching	thousands	of	students,	I	have	developed	a	deep
understanding	of	the	things	that	people	struggle	with	when	trying	to	make	the
transition	from	Excel	to	Power	BI.		I	am	not	saying	that	they	(or	you)	can’t	make
the	transition;	I	strongly	believe	that	any	competent	Excel	user	can	make	the
transition	from	using	Excel	to	using	Power	BI.		But	what	you	must	understand	is
that	Power	BI	is	not	the	same	type	of	tool	as	Excel.	

Figure	09-01:	Power	BI	is	not	the	same	type	of	tool	as	Excel
Power	BI	is	an	umbrella	term	referring	to	a	very	broad	ecosystem	including
Power	BI	Desktop,	the	Power	BI	Service	(Powerbi.com),	on	premise	report
servers,	and	paginated	reports	to	name	just	a	subset	of	the	total	ecosystem.		In
this	chapter	I	will	refer	to	just	the	Power	BI	authoring	tool	called	Power	BI
Desktop.		Power	BI	Desktop	and	the	PC	version	of	Excel	are	the	tools	that	are
potential	substitutes	for	each	other	in	the	world	of	self-service	business
intelligence	reporting.		I	will	be	comparing	Power	BI	Desktop	to	Microsoft
Excel	for	PC,	although	the	same	comparison	also	applies	also	to	Excel	for	Mac.	
At	this	writing,	there	is	no	Power	BI	Desktop	for	Mac.

Some	Things	Are	the	Same	in	Power	BI	and	Excel
Built	with	You	in	Mind
Let	me	start	out	by	talking	about	the	similarities	between	Power	BI	Desktop	and
Microsoft	Excel	for	PC.		Firstly,	and	most	importantly,	Power	BI	Desktop	was
built	with	Excel	users	front	of	mind.		Microsoft	did	this	for	a	very	important
reason	–	it	wanted	to	build	a	tool	that	was	easy	for	Excel	users	to	use.		Microsoft
corralled	key	people	from	the	Excel	and	Analysis	Services	teams	and	set	them	to
the	task	of	building	a	new	self-service	BI	tool.		Initially	the	team	built	Power
Pivot	for	Excel.		Then	a	team	was	created	to	build	Power	Query	for	Excel	and
another	team	worked	on	Power	View	for	Excel.		Once	these	three	“products”
were	underway,	Microsoft	had	started	to	build	out	all	the	components	needed	to
create	the	new	tool	that	we	know	of	today	as	Power	BI.

DAX	is	a	Functional	Language
At	the	core	of	Power	BI	is	the	Vertipaq	Engine	and	the	DAX	Language.		DAX
(Data	Analysis	Expressions)	is	the	formula	language	of	Power	BI.		Some	of	the
older	business	intelligence	and	relational	database	tools	do	not	have	a	functional
language	at	all	and	instead	have	a	scripted	query	language.		Traditional	SQL
Server	Analysis	Services	has	a	language	called	MDX	(Multidimensional
Expressions).		SQL	Server	itself	uses	a	scripted	query	language	called	T-SQL
(Transactional-Structured	Query	Language).		T-SQL	is	relatively	easy	to	learn
and	MDX	is	quite	hard	to	learn,	but	the	point	is	that	neither	of	these	database
tools	have	a	functional	language	like	in	Excel.
A	functional	language	is	one	that	uses	functions	to	perform	a	task.		I	like	to	think
of	a	function	like	a	black	box	–	you	give	it	some	inputs	and	it	gives	you	some
outputs.		You	don’t	need	to	know	“how”	it	comes	up	with	the	result	–	that	is	the
job	of	the	function.		Consider	the	function	SUM()	in	Excel.		This	function	takes
one	or	more	parameters	as	input(s)	and	returns	the	addition	of	the	values	as	its
output.		Power	BI	also	has	a	functional	language	(DAX)	and	this	makes	it	is
relatively	easy	for	Excel	users	to	make	the	transition	from	Excel	functions	to
DAX	functions.

DAX	has	Many	Common	Functions	with	Excel
There	are	many	functions	that	have	the	same	or	similar	syntax	to	DAX.		The
example	SUM()	given	above	is	a	good	case	in	point.		The	function	has	the	same
name	and	similar	syntax.		In	Excel	the	SUM()	function	accepts	ranges	as	inputs,
and	then	the	values	in	those	ranges	are	added	together.		DAX	is	slightly	different

–	it	accepts	a	single	column	from	a	single	table	as	the	input	and	adds	the	values
in	that	column.		More	on	this	later.
Here	is	another	example:	both	DAX	and	Excel	have	a	function	called
TODAY().		In	both	tools,	this	function	does	not	take	any	parameters	and	will
return	the	current	date	from	the	PC.	
The	list	of	common	functions	is	very	long.	You	can	download	my	DAX	Quick
Reference	Guide	PDF	from	http://xbi.com.au/drg

Sometimes	Functions	Are	Similar,	But	Have	Small	Differences
There	are	many	common	functions	that	have	the	same	name	in	both	DAX	and
Excel	but	have	a	slightly	different	syntax.		Take	the	OR()	and	AND()	functions
as	2	examples.		In	Excel,	both	of	these	functions	can	take	as	many	input
parameters	as	needed	to	solve	the	problem	at	hand.
Excel	Syntax	 OR(logical1,[logical2],…[logicalN])
Power	BI	Syntax OR(logical1,logical2)
Do	you	spot	the	difference?		The	Excel	syntax	will	accept	1,	2,	3,	or	as	many
parameters	as	you	need.		The	Power	BI	syntax	must	have	2	and	exactly	2
parameters.		For	this	reason,	I	am	not	a	big	fan	of	the	OR()	and	AND()	syntax	in
Power	BI.		Instead	I	tend	to	use	the	in-line	syntax	as	follows:
Power	BI	OR	Inline	Syntax logical1	||	logical2	||	logicalN
The	double	pipe	is	the	“in-line”	way	of	saying	OR	in	DAX.		The	pipe	symbol	is
the	vertical	bar	somewhere	on	your	keyboard.		The	exact	location	depends	on	the
locale	of	your	keyboard.
Power	BI	AND	inline	syntax logical1	&&	logical	2	&&	logicalN

http://xbi.com.au/drg

Many	Things	Are	Very	Different	Between	Power	BI	and	Excel
Although	there	are	many	similarities	between	Power	BI	and	Excel,	there	are
many	more	things	that	are	very	different.		The	rest	of	this	chapter	is	dedicated	to
explaining	these	differences	so	that	you	understand	them	and	know	how	to
approach	Power	BI	differently	to	Excel.	

Power	BI	is	a	Database,	Excel	is	a	Spreadsheet
Let	me	start	off	by	defining	what	I	mean	by	a	database	and	a	spreadsheet.

Database
A	database	is	a	tool	that	is	built	to	efficiently	store	and	retrieve	data.	There	are
different	types	of	databases	including	transactional	databases	(like	SQL	Server)
and	reporting	databases	(like	SQL	Server	Analysis	Services	SSAS).		Power	BI	is
more	like	SSAS	than	it	is	like	SQL	Server.
The	Power	BI	database	is	a	reporting	database.		It	is	not	designed	to	allow	you	to
edit	or	alter	the	data	that	is	loaded,	but	instead	to	faithfully	and	efficiently
produce	summary	reports	of	the	actual	data	loaded.
Spreadsheet
A	spreadsheet	is	a	2-dimensional	page	that	contains	multiple	cells	in	rows	and
columns.		It	is	an	unconstrained	“canvas	like”	space	not	unlike	a	canvas	used	by
an	artist	to	create	a	picture.		One	of	the	greatest	strengths	of	a	spreadsheet	is	that
you	can	do	anything	you	want	with	the	space.		One	of	the	greatest	weakness	of	a
spreadsheet	is,	you	guessed	it,	you	can	do	anything	you	want	with	the	space.		A
spreadsheet	is	a	doubled	edged	sword.		The	freedom	and	flexibility	to	do	what
ever	you	want	is	its	greatest	strength	and	its	greatest	weakness.
A	Spreadsheet	Used	as	a	Database
While	not	wanting	to	confuse	matters	any	more	than	needed,	the	simple	fact	is
that	many	business	people	tend	to	use	Excel	as	a	database	even	though	it	is
actually	a	spreadsheet.	I	am	not	saying	it	is	wrong	to	do	this,	it	is	just	that	Excel
lacks	the	checks	and	balances	that	exist	in	a	database	tool	to	prevent	accidental
errors	being	created.		Have	you	ever	wondered	why	a	500,000	row	spreadsheet
can	take	20	mins	to	update	when	you	make	a	change?		This	is	why	–	it	is	a
spreadsheet	and	was	not	designed	for	its	primary	purpose	to	be	a	database.
One	of	the	key	things	that	Microsoft	has	set	out	to	change	with	Power	BI	is	to
provide	a	more	robust	reporting	database	tool	designed	to	be	used	and
maintained	by	business	users.		Actually,	Power	BI	is	also	an	enterprise	strength
BI	tool.		Power	BI	is	designed	to	serve	both	self-service	and	enterprise	BI	users.
Differences	Between	a	Spreadsheet	and	a	Reporting	Database
There	are	quite	a	few	differences	between	these	things;	here	are	just	a	few	of
them.
Excel Power	BI

Can	change	one	or	more	data
points	by	just	typing	over	the	top.

The	data	must	be	changed	prior	to
(or	during)	load.		Once	the	data	is
loaded,	you	can’t	change	it.

Data	needs	to	be	in	a	single	table
before	you	can	summarize	the	data
using	a	Pivot	Table	or	Pivot	Chart.

Data	doesn’t	need	to	be
consolidated	into	a	single	table
prior	to	summarizing	using	a
Matrix	or	any	other	visual.		In	fact
you	are	encouraged	to	keep	the
data	in	separate	tables	as	a	star
schema.

Excel	formulas	are	created	and
then	copied.		Each	cell	therefore
has	its	own	unique	copy	of	a
formula	(except	array	formulas	of
course).	It	is	possible	that	formulas
across	cells	can	get	out	of	sync
causing	potential	errors.

DAX	formulas	(measures)	are
written	once.		The	same	measure	is
then	used	over	and	over	again	in
different	visuals.		There	is	only	one
single	definition	of	the	measure,	so
there	can	be	no	exceptions	and
discrepancies.		The	results	of	each
calculation	are	not	permanently
stored	but	only	used	when	needed
to	be	displayed	in	a	visual.
	
DAX	formulas	(calculated
columns)	can	be	written	in	the	data
view	to	extend	a	loaded	table	of
data.		This	looks	very	similar	to
Excel,	but	you	should	choose	to
use	measures	instead	of	calculated
columns	where	possible	(so	the
data	is	not	permanently	stored).

Each	copy	of	the	formula	can	be
edited	as	needed.		You	can	write
formulas	like	SUMIF()	to	create	on
the	fly	filters	and	summaries.

A	single	measure	is	re-used	with
different	“filters”	applied	to	get
different	results	from	the	same
measure.

Figure	09-02:	Differences	between	a	spreadsheet	and	a	reporting	database

Tips	to	Get	You	Started	as	You	Move	to	Power	BI
The	rest	of	this	chapter	will	focus	on	my	key	tips	to	help	get	you	started	on	your
Power	BI	journey.		What	you	do	with	this	information	is	important,	and	it	is
related	to	your	teachability	index.		The	Teachability	Index	is	defined	as:

There	is	no	point	learning	something	new	if	you	are	not	willing	to	change.	
There	is	no	point	being	willing	to	change	if	you	don’t	know	what	needs	to	be
done	differently.		What	is	your	teachability	index?

DAX	Calculated	Columns	vs	Measures	vs	Tables
Both	Power	BI	and	Excel	have	a	functional	language	that	a	business	user	can	use
to	extract	insights	from	the	underlying	data.		But	unlike	Excel,	the	DAX
language	can	be	used	in	three	very	different	ways	within	Power	BI	Desktop:
●								DAX	Measures
●								DAX	Calculated	Columns
●								DAX	Tables

Each	of	these	approaches	to	writing	DAX	are	valid,	and	they	all	use	the	same
DAX	language.		All	approaches	have	their	place	and	purpose	in	Power	BI,
however	in	my	experience,	most	beginners	make	some	simple	mistakes	and
select	the	wrong	approach.
Excel	Users	Write	Too	Many	Calculated	Columns
The	most	common	problem	I	see	Excel	users	make	is	to	write	too	many
calculated	columns.		I	am	not	saying	it	is	wrong	to	write	a	calculated	column	–
what	I	am	saying	is	that	most	Excel	users	tend	to	default	to	writing	calculated
columns	when	they	would	be	better	off	writing	measures	instead.
There	are	a	few	reasons	why	Excel	users	tend	to	default	to	writing	calculated
columns	rather	than	measures.
●								New	Power	BI	users	are	often	self-taught,	and	they	don’t	know	the

difference	between	a	calculated	column	and	a	measure.		Indeed,	often	they
don’t	even	know	that	measures	even	exist.

●								When	you	switch	to	the	data	view	in	Power	BI,	it	looks	a	lot	like	an	Excel
spreadsheet.		Excel	users	feel	very	comfortable	when	adding	a	new
column	to	a	table	that	looks	like	this,	because	it	feels	like	home.

Figure	09-03:	Data	view	in	Power	BI	looks	like	an	Excel	spreadsheet
●								The	DAX	syntax	is	normally	easier	in	a	calculated	column,	and	it	is	less

common	to	get	strange	error	messages	that	you	don’t	understand	(as	is
often	the	case	when	writing	measures	for	the	first	time).

SQL	Users	Write	Too	Many	DAX	Table	Queries
The	most	common	problem	I	see	SQL	Server	professionals	make	is	to	write	too
many	table	queries.		This	is	understandable	I	guess,	because	SQL	professionals
are	comfortable	writing	queries	and	DAX	is	used	as	a	query	language	when
creating	tables.		But	as	the	saying	goes,	“just	because	you	can,	doesn’t	mean	you
should”.		There	is	a	time	and	a	place	for	DAX	queries	and	DAX	tables,	but	it	is
often	not	the	best	approach	in	Power	BI	(sometimes,	but	not	often).
Everyone	Should	Be	Writing	Lots	of	Measures
The	new	shiny	thing	that	sets	Power	BI	apart	from	Excel	is	the	introduction	of
Measures.		Measures	are	not	a	new	concept	–	they	have	been	available	in	SQL
Server	Analysis	Services	for	many	years.		But	measures	are	new	to	most	Excel
users,	and	they	are	not	always	the	first	thing	that	comes	to	mind	to	SQL
professionals.		Unless	someone	tells	you	that	you	should	be	using	more
measures,	how	would	you	even	know?		I’m	telling	you	now	–	so	now	you	know.
Measures	have	a	lot	of	benefits	over	Calculated	Columns	and	Tables.		I	like	to
think	of	the	data	you	load	into	Power	BI	being	a	bit	like	raw	cooking	ingredients,
and	the	measures	you	write	being	like	a	“recipe”	to	“cook”	something	up	using
the	raw	data.		The	recipe	is	repeatable	–	you	can	use	it	over	and	over	again
against	the	same	ingredients	to	get	the	same	result.
Benefits	of	measures	include:
●								Measures	do	not	create	duplications	of	your	data.	Conversely,	both

calculated	columns	and	tables	duplicate	the	data	in	Power	BI.

●								You	write	a	measure	once,	and	then	use	it	many	times.
●								Each	measure	that	references	one	or	more	columns	can	be	given	its	own

unique	name	making	it	easy	for	end	users	to	find	and	use	the	business
insights	they	need.	

e.	g.:
Total	Sales	=	SUM(Sales[Value])
Avg	Transaction	Value	=	AVERAGE(Sales[Value])

	
Note	how	the	above	2	measures	reference	the	same	column,	but	they	deliver	a

different	business	insight.	The	name	clearly	communicates	what	the
measure	is	providing.

●								Each	measure	has	its	own	bespoke	formatting	that	is	fit	for	purpose.		e.	g.
even	though	Total	Sales	and	Avg	Transaction	Value	above	are	calculated
from	the	same	column	of	data,	both	of	these	measures	can	have	their	own
data	format

e.	g.:
Total	Sales	=	$29.36	M
Avg	Transaction	Value	=	$486.09

●								Measures	can	use	data	from	multiple	columns	and	tables	within	the	same
formula.		This	cannot	be	done	with	a	simple	drag	and	drop	of	a	column
into	a	visual	in	Power	BI.

Using	Visuals	to	Structure	your	Output
When	you	first	open	a	new	report	in	Power	BI,	you	are	faced	with	a	daunting
sight.		The	Power	BI	Report	canvas	looks	a	lot	more	like	Power	Point	than	it
does	Excel.

Figure	09-04:	PowerPoint’s,	Power	BI’s	and	Excel’s	canvas
Power	BI	intentionally	has	a	blank	reporting	canvas.		When	you	want	to
visualize	your	data,	you	need	to	add	one	or	more	visualisations	to	the	reporting
canvas	to	create	the	layout	structure	for	your	report.
Creating	Structure	in	Excel
Excel	has	a	2	x	2	grid	to	store	your	data.		You	can	put	any	bespoke	number,	text,

formula	etc,	in	each	and	every	cell	on	the	sheet.		There	is	little	or	no	constraint
on	how	you	must	proceed	to	structure	your	report.		It	is	possible	that	you	may
end	up	with	a	nice,	orderly,	tabular	layout	in	your	Excel	spreadsheet,	but	of
course	it	may	not	end	up	that	way	if	you	are	not	careful.
Creating	Structure	in	T-SQL
Writing	queries	using	T-SQL	uses	a	different	approach	to	a	spreadsheet.	You
write	code	using	the	T-SQL	query	language.		The	structure	of	the	tabular	output
and	all	the	aggregations	are	configured	inside	the	T-SQL	script	itself	(see	the
example	below).

Figure	09-05:	Creating	structure	in	T-SQL
Creating	Structure	with	DAX	Queries
When	you	write	DAX	Queries	in	Power	BI	to	produce	a	table,	the	process	is
quite	similar	to	T-SQL	above.	This	is	why	many	SQL	professionals	like	to	write
DAX	queries.		Here	is	a	DAX	query	that	could	be	considered	equivalent	to	the
T-SQL	Script	above.

Figure	09-06:	Creating	structure	with	DAX	queries
Despite	being	able	to	write	DAX	queries	as	shown	above,	Power	BI	is	not
designed	to	use	this	approach	as	the	primary	way	to	create	summary	data.
Instead,	you	should	prefer	to	use	Power	BI	visuals	to	create	the	structure.

Creating	Structure	in	Power	BI	with	Visuals
Both	the	Excel	approach	and	T-SQL	approach	outlined	above	are	very	different
to	the	Power	BI	approach.		When	using	Power	BI,	the	structure	of	the	output	is
first	selected	from	one	of	the	available	visuals.
Each	visual	will	implicitly	shape	and	control	the	structure	of	the	final	output.		If
you	don’t	like	the	result,	it	is	very	easy	to	change	it	to	a	different	visual	(try
doing	that	in	Excel).

Figure	09-07:	Standard	visuals	in	Power	BI
I	always	teach	Excel	users	to	start	with	a	Matrix,	as	this	is	the	closest	match	to
an	Excel	pivot	table	and	a	sheet.	Using	a	Matrix	as	the	starting	visual	is	a	good
way	to	get	used	to	using	Power	BI.		Another	good	thing	about	using	the	Matrix
visual	is	you	get	to	“see”	the	numbers.		This	makes	the	experience	more	“Excel
like”,	and	it	is	an	important	visual	confirmation	that	you	are	doing	something
right.
After	adding	the	visual	to	the	canvas	(as	can	be	seen	in	1	below),	data	can	be
added	to	the	matrix	against	Rows	(2),	Columns	(3)	and	Values	(4).		This	process
is	very	similar	to	how	you	would	build	a	pivot	table	in	Excel.

Figure	09-08:	Steps	to	create	a	visual	in	Power	BI
In	the	image	below,	I	have	built	the	same	table	created	earlier	using	T-SQL	but	I
have	used	the	Matrix	visual	to	create	the	structure	of	the	result.		The	big
difference	is	that	the	table	below	was	built	without	writing	a	single	line	of	code.	
I	simply	added	the	matrix	visual,	dragged	the	Product[Category]	column	into	the
Rows	and	the	Sales[ExtendedAmount]	column	into	the	Values	–	Power	BI	did
the	rest.

Figure	09-09:	A	Matrix	visual	with	columns	Category	and	ExtendedAmount
Note:	Sales[ExtendedAmount]	is	a	column	of	numbers,	not	a	measure.		When	I
added	the	column	to	the	Values	above,	Power	BI	was	smart	enough	to	add	the
numbers	up	for	me	without	writing	a	measure.
Why	Write	Measures	at	All,	Then?
OK,	so	now	you	are	asking	why	bother	to	write	measures	at	all	when	you	can
just	drag	a	column	of	numbers	into	a	visual.		Well,	the	short	answer	is	that	you
don’t	have	to	write	measures	if	you	don’t	need	to.		The	basic	concepts	such	as
adding	up	numbers	in	a	column,	finding	the	average	in	a	column,	etc	can	all	be
achieved	by	dragging	a	column	of	data	to	the	Values	section	of	the	visual,	and
then	setting	the	aggregation	behaviour	for	that	data	in	the	column.	If	you	don’t
like	the	default	aggregation	for	the	column,	you	can	change	it	by	selecting	the
drop-down	menu	(shown	in	1	below)	and	then	selecting	a	different	aggregation
from	the	available	options	(2	below).

Figure	09-10:	How	to	select	the	aggregation	for	column	ExtendedAmount
But	while	the	above	approach	will	work,	you	will	very	quickly	hit	the	limits	of
capability.		Take	the	following	example:
●								You	can	drag	a	column	to	work	out	the	total	number	of	invoices
●								You	can	drag	a	column	to	work	out	the	total	number	of	items	sold

Figure	09-11:	A	matrix	visual	over	Year,	Invoice	Number,	and	Order
Quantity
But	you	can’t	drag	a	column	to	find	out	the	average	number	of	items	per
invoice.		You	need	data	from	two	columns	to	complete	this	calculation,	and	for
that	you	will	need	to	write	a	DAX	Measure.	
I	have	written	the	DAX	measure	to	calculate	the	average	number	of	line	items
per	invoice,	and	you	can	see	it	in	the	formula	bar	in	the	image	below.

Figure	09-12:	A	matrix	visual	by	Year,	Invoice	Number,	Order	Qty,	and	Avg
Line	Items	per	Invoice
In	addition	to	needing	a	DAX	measure	when	you	are	referencing	multiple
columns	of	data,	don’t	forget	all	the	benefits	of	having	better	business	names	for

your	measures	and	also	being	able	to	apply	suitable	formatting	for	each
individual	business	concept.	Compare	the	table	above	with	the	DAX	version
below	and	note	the	changes/improvements	in	the	names	and	the	formatting.

Figure	09-13:	A	matrix	visual	over	Total	Line	Items,	Total	Invoices,	and	Avg
Line	Items	per	Invoice

Total	Line	Items	=	SUM(Sales[OrderQuantity])
Total	Invoices	=	DISTINCTCOUNT(Sales[Invoice	Number])
Avg	Line	Items	per	Invoice	=	DIVIDE([Total	Line	Items]	,	[Total
Invoices])

Figure	09-14:	DAX	formulas	for	Total	Line	Items,	Total	Invoices,	and	Avg
Line	Items	per	Invoice
I	hope	you	agree	the	good	business	names,	the	suitable	formatting,	and	the	reuse
of	measures	inside	other	measures	all	make	the	small	extra	effort	of	writing
measures	worthwhile.		Believe	me,	writing	measures	and	learning	to	write	DAX
is	the	secret	sauce	that	will	set	the	Power	BI	superheros	apart	from	the	rest	of	the
pack.

Filter	First,	Calculate	Second
In	Excel,	you	can	write	bespoke,	one	off	formulas	in	any	cell	you	like.	That	is
not	how	it	works	in	Power	BI.		In	Power	BI,	you	first	take	ALL	the	data	you	are
given	in	one	or	more	columns	or	tables.		You	write	generic	formulas	(Measures)
using	those	column	and	table	inputs	and	use	the	visuals	to	filter	the	data	before
returning	the	results.
Use	the	Visuals	to	Filter	the	Data	Before	Returning	the	Results
I	want	you	to	read	that	heading	again	“use	the	visuals	to	filter	the	data	before
returning	results”.		This	is	one	of	the	most	important	concepts	you	must
understand	about	Power	BI.		Let	me	refer	back	to	the	Matrix	I	created	earlier
(shown	again	below	for	convenience).

Figure	09-15:	A	matrix	visual	over	Total	Line	Items,	Total	Invoices,	and	Avg
Line	Items	per	Invoice
As	you	can	see	in	the	visual	above,	there	are	5	different	numbers	in	the	Matrix
for	[Total	Invoices]	despite	the	fact	that	I	only	wrote	one	DAX	Measure.		The
DAX	measures	is	as	follows:
Total	Invoices	=	DISTINCTCOUNT(Sales[Invoice	Number])
Despite	only	writing	a	single	formula,	you	can	see	I	have	5	different	results.	
How	can	that	be?		The	answer	is	that	the	Visuals	in	Power	BI	filter	your	data	–
that’s	what	they	do.
I	am	not	suggesting	you	would	be	surprised	to	see	5	different	numbers	for	Total
Invoices	in	the	Matrix	above.		What	I	am	saying	is	that	you	need	to	understand
HOW	those	5	different	numbers	were	created.	
The	process	is	as	follows.
●								The	Row	section	of	the	visual	is	displaying	the	Calendar[Year]	column.
●								The	visual	takes	the	first	year	(2001	in	this	case)	and	filters	the	Calendar

table.
●								The	filter	on	the	Calendar	table	flows	through	the	relationship	in	the

direction	of	the	arrow	(shown	in	1	below	in	the	Model	view)	onto	the
sales	table	(no	VLOOKUP	required	here).	

Figure	09-16:	Flow	of	filters	from	one	table	to	another

●								Now	the	sales	table	is	filtered	for	all	sales	in	2001	as	a	result	of	the	filter
flowing	from	the	Calendar	table	to	the	sales	table.		We	say	that	the	filter
propagates	from	the	Calendar	table	to	the	Sales	table.

●								The	DAX	formula	then	is	calculated	for	just	those	sales	that	remain	after
the	filter	is	applied	to	all	the	tables.

●								Every	row,	column,	bar,	line,	pie	slice,	total,	sub-total	etc	in	Power	BI	are
ALL	calculated	this	way.

All	DAX	formulas	are	always	evaluated	using	this	approach.		Filter	first,
evaluate	the	result	second	after	all	filters	have	been	applied.		If	you	remember
nothing	else	from	this	chapter,	this	is	it.		

Filter	First,	Evaluate	Second
Understanding	filter	propagation	is	essential	to	writing	good	DAX.

About	the	Author
Matt	Allington	is	a	Power	BI	Consultant,	Trainer	and	MVP	specialising	in
helping	business	users	learn	and	apply	Power	BI	to	solve	business	problems.	
Matt	has	over	35	years’	commercial	and	IT	experience	using	data	to	get	things
done.		Matt	is	the	author	of	the	bestselling	book	“Supercharge	Power	BI	–	Power
BI	is	Better	When	You	Learn	to	Write	DAX”	http://xbi.com.au/scpbib	and	he
runs	regular	live	online	training	courses	teaching	people	how	to	use	Power	BI
http://xbi.com.au/scpbi

http://xbi.com.au/scpbib
http://xbi.com.au/scpbi

Part	IV:	AI	and	Power	BI

Chapter	10:	AI	for	Business	Users	in	Dataflow	and
Power	BI	Desktop
	
Author:	Leila	Etaati
In	this	chapter,	an	overview	of	how	to	use	AI	in	Power	BI	service	and	Power	BI
desktop	will	be	discussed.	For	business	users,	always	using	AI	is	about	easy
access	to	the	tools	without	writing	any	codes	and	activate	AI	capability	with	a
couple	of	clicks.	In	this	chapter	two	different	possibility	of	consuming	AI,	will
be	discussed.	First	how	as	a	business	user	we	are	able	to	analyse	the	text	in
Power	BI	service	will	be	shown.	In	the	next	part,	how	using	some	AI	powered
visuals	such	as	Key	Influencer	in	Power	BI	desktop	to	analyse	the	data	without
knowing	the	machine	learning	concepts.

Cognitive	Service	in	Power	BI
Cognitive	Services	are	an	asset	of	APIs,	SDKs	and	services	that	can	be	use	by
developers	to	add	AI	to	their	applications.	Cognitive	services	in	Azure	has	five
major	categories	as	Language,	Vision,	Speech,	Search	and	Decision.	Each	of
those	has	a	selection	of	different	services.	These	services	have	been	used	by
many	developers	in	web,	and	mobile	applications.	Moreover,	there	is	a	way	to
use	them	in	Power	BI	reports	[1].
One	of	the	interesting	services	is	about	language	analysis	or	Text	Analytics.	Text
analytics	can	range	from	detecting	the	main	keywords	in	a	sentence,	identify
how	much	a	customer	is	happy,	detecting	the	main	entity	and	structure	of	a
sentence,	detect	the	language	of	a	sentence	and	so	forth.
As	a	developer	in	Power	BI	Desktop,	there	is	a	way	to	use	the	Text	Analytics
API	in	Power	Query	[2].	However,	this	process	is	a	bit	hard	for	Business	users	or
people	who	are	not	familiar	with	Power	Query.	In	this	section,	First,	how	a
business	user	is	able	to	use	cognitive	services	for	the	aim	of	text	analytics	and
extract	the	main	keywords	of	the	text.

AI	in	Dataflow
There	is	an	announcement	about	the	availability	of	using	Cognitive	Services	in
Power	BI	Service,	Dataflow.		Dataflow	is	the	new	feature	in	Power	BI	service
that	allows	people	to	transform	their	data	in	the	cloud	and	do	the	ETL	in	the
Power	BI	service.
To	access	the	AI	in	Dataflow	you	need	to	have	a	premium	account.
To	start,	you	need	to	login	to	your	Power	BI	Service	account,	and	you	need	to
create	a	new	workspace	(not	“My	Workspace”).	You	will	not	be	able	to	create
Dataflow	in	“My	workspace”	(Figure	10-01).
	

Figure	10-01:	Create	New	Workspace	in	Power	BI	Service
To	create	a	new	workspace,	click	on	the	“Workspaces”,	then	click	on	the	“Create
app	workspace”.	Now,	in	the	new	page,	you	are	able	to	create	a	new	workspace
(pro	or	premium).	Now	you	can	create	a	new	one	by	putting	the	name,
description	and	image	for	the	workspace.	So,	choose	the	proper	image,	name,
and	description	and	click	on	the	Save	(Figure	10-02).

Figure	10-02:	Create	New	Workspace	by	providing	some	Details
In	the	new	page,	you	can	see	your	new	workspace	and	the	welcome	page,	just
skip	the	welcome	page	to	navigate	to	the	main	workspace.

Figure	10-03:	Workspace	Welcome	Page
In	the	main	workspace	page,	beside	Dashboard,	Reports,	Workbooks,	and
Datasets,	we	a	have	new	tab	named	Dataflow.	Click	on	Create	option	at	the	top

right	of	the	page	and	choose	the	Dataflow.

Figure	10-04:	Create	New	Dataflow	in	Power	BI	Service
By	creating	a	new	Dataflow,	Power	BI	Service	navigates	you	to	a	new	page	that
is	asks	you	about	adding	entities	(data	source)	click	on	the	“Define	new	entities”
(Figure	10-05).

Figure	10-05:	Define	New	entity	page
In	the	next	page,	you	can	connect	to	different	resources	from	cloud	to	on-
premises.	For	this	example,	I	just	put	some	comments	people	put	for	some
products,	to	access	the	data	navigate	to	the	files	folder,	data	for	chapter	17.	Click
on	the	Blank	Table.

	Figure	10-06:	Create	a	Blank	Table
	
Then	change	the	title	of	the	column	to	Comments,	put	the	text	for	each	row	(row
by	row).	then	put	a	name	for	the	table	and	click	on	the	Next.

Figure	10-07:	Create	a	Blank	Table	and	Put	the	text
The	new	query	will	be	generated	and	navigate	into	a	new	page	as	Power	Query
editor	in	Power	BI	web	service.	As	you	can	see	in	the	below	Figure	10-08,	It	has
some	of	the	features	of	the	Power	Query	Editor	from	transforming	the	columns,
to	combine	and	so	forth.	For	the	aim	of	text	analytics,	there	is	an	icon	on	the	top
of	the	page	as	AI	Insight,	click	on	it.
	

Figure	10-08:	Edit	Data	in	Dataflow
Then	a	new	page	will	show	up	that	you	will	see	the	cognitive	service	folder	(if
you	already	create	one	for	Azure	ML	there	should	be	a	folder	for	Azure	ML	as
well).	Expand	the	cognitive	services	folder	and	you	will	be	able	to	see	four
different	cognitive	services
●								Sentiment	Analysis
●								Keyword	Extraction
●								Language	Detection	and
●								Image	Tag

Click	on	the	last	one	that	is	Sentiment	Analysis

Figure	10-09:	Cognitive	Service	in	Dataflow
Sentiment	Analysis	is	for	identifying	how	much	a	customer	is	happy	with
products.	The	value	will	range	from	0	to	1.
If	the	value	is	close	to	1that	means	the	customer	is	happy	about	the	product,
otherwise	if	the	value	is	close	to	0	that	means	the	customer	is	not	happy	about
the	product.
Choose	the	sentiment	analysis	service,	it	will		aske	about	the	target	column
as	Text,	then	you	need	to	choose	the	column	you	want	to	apply	this	service.	In
this	example	the	Comment	should	be	chosen	as	the	target	column.
Then,	just	click	on	Invoke.	A	new	page	will	be	shown	that	shows	the	original
column	(Comment)	plus	a	newly	added	column	name	Cognitive	Service.	This
new	column	has	a	value	from	0	to	1	for	each	row.

Figure	10-10:	Invoke	Sentiment	Analysis	in	Power	BI	Service

Now	we	got	the	result,	we	need	to	save	the	result	so	we	can	use	it	in	Power	BI
Service	report	or		Power	BI	Desktop.	Click	on	“done”	at	the	bottom	of	the	page
to	apply	all	changes.	Then,	you	need	to	save	the	query	by	clicking	on	the	top
right	of	the	page	and	put	a	name	for	the	query.
Then,	under	the	Dataflow	you	can	see	your	new	Dataflow.	You	just	need	to	click
on	the	Refresh	Button.	In	this	example,	first	I	am	going	to	get	the	data	in	Power
BI	desktop.
To	do	that,	open	your	Power	BI	Desktop,	and	sign	in	with	the	account	you	used
for	the	Dataflow.	Click	on	Get	Data,	choose	the	Power	BI	dataflow,	you	my	need
to	sing	into	your	power	BI	service	that	you	created	the	dataflow.

Figure	10-11:	Connect	to	Dataflow	from	Power	BI	Desktop
After	signing	in,	now	you	can	see	the	list	of	Dataflow	you	already	created.
Expand	the	list	and	see	an	overview	of	the	query	with	Comments	and	sentiment
score	columns.	Now	by	loading	the	data	you	are	able	to	create	a	report	in	Power
BI	Desktop.

Figure	10-12:	Dataflow	in	Power	BI	Desktop
You	can	also	extract	the	Keywork	and	the	language	of	the	text	following	the
same	process.
However,	for	the	image	tagging	you	may	need	to	follow	some	more	steps.	In	the
next	section,	I	will	explain	the	process.

Image	Tag	in	Power	BI
Image	tag	is	another	service	in	Cognitive	Service	that	allows	to	extract	the	object
in	the	image	and	for	each	detected	object,	it	provides	the	confidence	level.
To	see	a	demo	on	this	service	you	need	to	navigate	to	the
https://azure.microsoft.com/en-us/services/cognitive-services/computer-
vision/#analyze
Then	just	import	a	picture	and	see	the	result.	For	example,	I	uploaded	a	picture
of	my	dog	and	I	got	the	below	results.

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/#analyze

Figure	10-13:	Image	Tag	in	Cognitive	Service
This	service	is	available	in	Dataflow	alongside	with	other	language	service.	I
already	uploaded	some	of	the	pictures	into	my	Azure	Blob	storage	and	in	this
section,	I	will	show	how	to	apply	image	tag	on	them	using	Cognitive	Service
function	available	in	AI	Insight.
I	have	some	links	to	my	pictures,	also	I	need	to	write	some	code	to	extract	them
from	the	blob	storage	(Figure	10-14).

Figure	10-14:	Image	Links	in	Blob	Storage	and	the	Required	Code	to
extract	them.
Next,	get	data	in	Dataflow	(same	as	the	previous	section),	this	time	instead	of
choosing	the	get	data	from	text,	choose	the	get	data	from	Blank	Query.

Figure	10-15:	Get	Data	from	Blank	Query
In	the	new	page	delete	the	existing	code	and	replace	it	with	below	code	(you
should	have	your	own	image	link).
let
Source	=	Table.FromRows({	{	Web.Contents("image	address	1")	},
{Web.Contents("image	address	2")	},	{Web.Contents("image	address	3")	},	{
Web.Contents("image	address	4")	}},	{	"Image"	})
in	Source
	

Figure	10-16:	Get	Data	Using	Blank	Query

	
After	loading	the	data,	you	should	see	the	imported	image	as	a	column	with
binary	format.

Figure	10-17:	Loaded	Image	with	Binary	Format
Next,	click	on	the	AI	Insight	at	the	top	of	the	page,	and	this	time	choose	the
Image	Tag	function.

Figure	10-18:	Image	Tag	Function
Select	the	Image	column	and	click	on	“Apply”	to	see	the	results.	Then	you	need
to	expand	the	result	to	see	two	columns:	one	is	the	image	tag	and	another	one
has	more	details	such	as	image	tags	and	related	confidence.

Figure	10-19:	Image	Tag	Results	in	Dataflow
Just	expand	the	results	to	see	the	tags	and	confidence.	Same	as	text	analytics,
you	can	see	the	query	in	Power	BI	Desktop.	You	need	to	put	a	name	and	refresh
the	dataset	in	Dataflow,	then	open	your	Power	BI	Desktop	and	from	“get	data”
choose	the	Dataflow.	The	result	is	like	a	JSON	format,	so	you	need	to	do	some
data	transformation	to	see	the	confidence,	but	the	Image	tag	column	is	already
cleated.

Figure	10-20:	Image	Tag	Results	in	Power	BI	Desktop
	
	

Key	Influencer
In	this	section,	I	am	going	to	demonstrate	a	new	visualization	that	has	been
released	by	 the	AI	team	in	Power	BI	in	recent	months.	Before	showing	off	this
nice	feature,	there	are	some	key	points	about	this	visual.
●								It	can	be	used	by	Data	scientist,	Data	Engineer	and	End	users	
●								It	is	easy	enough	to	use	and	interpret
●								It	consumes	lots	of	algorithms	behind	the	scene	to	identify	the	main	factor
●								It	can	be	used	to	align	with	other	customer	visuals	to	create	a	better

visualization
	

Figure	10-21:	Who	can	use	Key	Influencers	Visual
Moreover,	this	visual:
●								Interpret	both	Categorical	and	Numeric	variables
●								Provides	a	great	clustering	approach:	find	the	natural	grouping	on	data,

and	then	visualize	the	main	top	cluster	(segment)	and	also,	it	shows	how	a
combination	of	factors	affects	the	metric	that	you’re	analysing.

●								Explain	the	results:	the	visual	provides	a	brief	description	of	how	it	works
[1]

●								As	mentioned	before,	this	visual	employs	a	combination	of	algorithms.	In
categorial	and	regression	analysis	different	algorithms	are	used.

Figure	10-22:	Analysing	categorial	and	Numeric	Values
	
In	this	section,	I	am	going	to	use	a	dataset	about	concrete.	Concrete	is	used	in
building	the	bridge,	buildings	and	so	forth.
The	main	elements	for	creating	concrete	is
●								Cement:	A	cement	is	a	binder,	a	substance	used	for	construction	that	sets,

hardens,	and	adheres	to	other	materials	to	bind	them	together.
●								Blast	Furnace	Slag:	stony	waste	matter	separated	from	metals	during	the

smelting	or	refining	of	ore.
●								Fly	Ash:		Fly	ash	or	flue	ash,	also	known	as	pulverized	fuel	ash	in	the

United	Kingdom,	is	a	coal	combustion	product	that	is	composed	of	the
particulates	that	are	driven	out	of	coal-fired	boilers	together	with	the	flue
gases.

●								Water:	The	amount	of	water	in	concrete	controls	many	fresh	and
hardened	properties	in	concrete	including	workability,	compressive
strengths,	permeability	and	water	tightness,	durability	and	weathering,
drying	shrinkage	and	potential	for	cracking	[2].

●								Superplasticizer:	Superplasticizers,	also	known	as	high	range	water
reducers,	are	chemical	admixtures	used	where	well-dispersed	particle
suspension	is	required.	These	polymers	are	used	as	dispersants	to	avoid
particle	segregation	and	to	improve	the	flow	characteristics	of	suspensions
such	as	in	concrete	applications	[3].

●								Coarse	Aggregate:	Coarse	aggregate	is	the	portion	of	the	concrete	which
is	made	up	of	the	larger	stones	embedded	in	the	mix.	Concrete	contains
three	ingredients;	Water,	cement,	and	aggregate.	That	aggregate	is	made	of
fine	sand	and	coarse	gravel.

●								Fine	Aggregate
●								Age:	how	many	days

	The	dataset	available	from	here:	http://archive.ics.uci.edu/ml/machine-learning-
databases/concrete/compressive/Concrete_Data.xls
So,	let’s	start	to	predict	what	will	be	the	strength	of	the	concrete	regarding	other
elements	such	as	ashes,	water,	and	so	forth.

List	of	Questions
I	want	to	answer	the	following	questions:
●								What	factors	have	more	impact	on	the	strength	of	the	concrete	to	decrease

or	increase	and	how	much?
●								I	am	interested	in		seeing	the	natural	classification	of	my	data.
●								Also	interested	in	seeing	some	rules	like	if	the	amount	of	Cement	is	…

and	age	is	…	then	what	is	the	strength
Let’s	Answer	these	three	questions	using	a	brand-new	visualization	named	Key
Influencers.

Get	it!
The	key	influencer	is	a	preview	feature,	to	access	it	you	need	to	follow	below
steps
Click	on	File	–>	Option	and	Settings	–>Options	–>	then	click	under	Global,
click	Preview	Feature,	and	you	should	find	the	Key	Influencer	Visual	at	the
bottom
You	need	to	restart	the	Power	BI	(close	and	open	again)
Just	notice,	it	is	a	preview	feature,	some	enhancement	will	be	applied	on	it	soon
	

http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/compressive/Concrete_Data.xls

Figure	10-23:	Enable	Key	Influencers	Visual

Use	It!
Now	you	need	to	import	the	concrete	dataset	into	Power	BI	Desktop
Get	Data	–>	CSV	–>	Load
Now	Our	plan	is	to	analyse	the	strength	of	the	concrete,	hence	click	on	visual
that	has	been	added	to	the	Visualization	panel,	and	for	the	analyse	choose
Strength	field	from	Concrete	dataset.	You	can	see	in	the	Figure	10-24.

Figure	10-24:	Load	Data	and	Select	which	Column	to	Analyse
Now,	you	drop	other	columns	into	“Explained	By”	data	field	and	see	the	visual
show	some	analytics	about	what	will	impact	on	the	strength	of	the	concrete.

Figure	10-25:	Fill	out	the	Explained	by	Data	Fields

The	first	important	point,	the	list	of	the	factors	are	displayed	in	the	left	panel
with	specific	order.	The	one	at	the	top	has	most	impact	on	the	strength	of
concrete	than	others.	As	you	can	see	in	the	Figure	10-26,	If	the	cement	increases
400	then	the	strength	will	increase	by	18.35	in	another	word	it	impacts	by	4.5%.
	

Figure	10-26:	Concrete	Strength	Analysis	by	Key	Influencers	Visual
There	is	another	analysis	tab	named	Top	Segments.	Click	on	the	Top	segment	at
the	top	and	choose	the	first	segment	with	61.12.	As	you	can	see	in	the	Figure	10-
27,	in	Segment	1,	the	average	strength	is	61.12	and	the	average	age	of	cement	is
more	than	3	days	and	amount	of	cement	is	between	159.1	and	262.

Figure	10-27:	Top	Segment	Analysis
	
This	visual	uses	the	decision	tree	algorithms	to	extract	the	rules	about	which
attribute	will	impact	on	the	strength	of	cement.		As	a	business	user,	you	are	not
running	any	algorithm,	and	by	using	the	Key	Influencers	visual	the	analysis	will
be	automatically	shown	to	you.	This	example	was	about	a	continues	value
(strength	of	cement)	but	you	can	also	use	it	for	the	categorial	variable	analysis	as
well.

Summary
In	this	chapter,	some	of	the	features	for	AI	that	can	be	used	by	the	business	users
without	writing	any	code	in	Power	BI	service	and	Desktop	have	been	explained.
First,	an	explanation	on	how	to	apply	text	analytics	on	the	customer	feedback
was	discussed.	How	users	can	see	the	customer	feedback	in	a	numeric	scale	has
been	shown.	Next,	how	we	to	do	image	tagging	has	been	presented.	Finally,	the
analytical	Key	Influencers	visual	that	provides	more	insight	out	of	data	has	been
presented.
All	these	features	presented	in	this	chapter	can	be	done	by	Business	Users,
Developers	and	Data	Scientists.
	

About	the	Author

Leila	is	the	first	Microsoft	AI	MVP	in	New	Zealand	and	Australia.	She	has	a
PhD	in	Information	System	from	the	University	of	Auckland.	She	is	the	Co-
director	and	data	scientist	in	RADACAD	Company	with	more	than	100	clients
around	the	world.		She	is	the	co-organizer	of	Microsoft	Business	Intelligence	and
Power	BI	Use	group	(meetup)	in	Auckland	with	more	than	1200	members,	She
is	the	co-organizer	of	three	main	conferences	in	Auckland:	SQL	Saturday
Auckland	(2015	till	now),	Difinity	(2017	till	now)	and	Global	AI	Bootcamp	2-
18.	She	is	a	Data	Scientist,	BI	Consultant,	Trainer	and	Speaker.	She	is	a	well-
known	International	Speakers	to	many	conferences	such	as	Microsoft	Ignite,
SQL	PASS,	Data	Platform	Summit,	SQL	Saturday,	Power	BI	World	Tour	and	so
forth	in	Europe,	USA,	Asia,	Australia	and	New	Zealand.	She	has	over	ten	years’
experience	working	with	databases	and	software	systems.	She	was	involved	in
many	large-scale	projects	for	big-sized	companies.	Leila	is	an	active	Technical
Microsoft	AI	blogger	for	RADACAD.
	
	

http://radacad.com/leila-3
https://mvp.microsoft.com/en-us/PublicProfile/5002206?fullName=Leila%20Etaati
http://www.radacad.com/
https://www.meetup.com/New-Zealand-Business-Intelligence-User-Group/
https://www.sqlsaturday.com/754/eventhome.aspx
http://difinity.co.nz/
https://2018.globalaibootcamp.com/bootcamp/513c0a6d-5230-42f0-aaf1-ba25bc015236.html
http://radacad.com/author/leila

Chapter	11:	AI	in	Power	BI	Desktop
	
Author:	Markus	Ehrenmüller-Jensen
AI	is	everywhere	–	and	now	even	included	in	Power	BI	Desktop.	Sometimes	AI
might	be	very	apparent	when	you	enrich	your	data	with	predictions	by	explicitly
calling	an	Azure	Machine	Learning	web	service	in	Power	Query.	Sometimes	it
might	by	hidden	in	an	analytic	feature	offered	by	Power	BI’s	interface.
No	matter	if	you	are	a	business	user,	analyst	or	data	scientist	–	Power	BI	has	AI
capabilities	tailored	to	you.	This	chapter	will	cover	how	you	can	integrate	and
leverage	the	use	of	languages	DAX	and	R,	and	how	to	integrate	Azure	Cognitive
Services	and	Azure	Machine	Learning	Services	to	make	more	out	of	your	data.

Introduction
Microsoft	is	currently	investing	heavily	in	making	Artificial	Intelligence	(AI)
available	for	everybody.	After	Self-service	BI	we	are	now	facing	Self-service	AI.
In	this	chapter	we	will	concentrate	on	the	capabilities	of	Power	BI	Desktop	(not
the	Power	BI	Service,	as	in	the	previous	chapter).	While	the	possibilities	are
almost	endless,	I	will	concentrate	on	two	AI	functionalities,	linear	regression	and
text	mining,	and	walk	you	through	the	steps	necessary	to	implement	both	with
different	features	within	Power	BI	Desktop:	Visuals	&	Analytics,	DAX,	R,
Azure	Cognitive	Services,	and	Azure	Machine	Learning	Services.	While	the
chapter’s	limitations	in	term	of	pages	do	not	allow	for	a	comprehensive
introduction	to	neither	Linear	Regression	and	Text	Mining,	nor	to	DAX,	R,
Azure	Cognitive	Services	and	Azure	Machine	Learning	Services,	it	gives	you	an
impression	of	what	steps	you	need	to	take	and	of	how	to	get	started.	Take	the
examples	as	templates	from	which	you	can	derive	solutions	for	problems	of	your
own	organisation.

Linear	Regression
Linear	regression	is	a	quite	simple	mathematical	formula	to	create	e.	g.	a	trend
line	for	a	measure	over	time.	In	our	example	I	will	use	simple	linear	regression
for	sales	amount	over	order	date,	like	the	straight	blue	line	in	this	screenshot:

Figure	11-01:	Sales	Amount	and	Simple	Linear	Regression	by	Date
While	Simple	Linear	Regression	has	its	limitations	and	assumptions,	it	is	simple
enough	to	understand	it	with	mere	basic	mathematical	knowledge	and	allows
you	to	learn	about	the	data	(in	our	case:	the	correlation	between	sales	amount
and	the	order	date).	The	formula	is:

While:	 is	the	amount	for	 	where	the	line	crosses	the	 	-axis.	And
	states	how	much	Y	increases	for	every	increase	of	 	(for	positive	valus

of	 ;	a	negative	 	would	mean	a	decreasing	value	of	 for	every
increase	of).

In	plain	English:	When	 	is	zero,	 	is	calculated	as	the	 .	This	might
not	be	an	appropriate	assumption	in	all	cases	(e.	g.	because	there	is	not	a	real-

world	zero-value	for	our	order	date).	And	 	tells	us,	how	much	 	increases
(or	decreases	for	that	matter)	every	single	day	over	the	order	date.

The	actual	values	for	 and	 	can	be	calculated	via	the
following	formulas:

Now	let’s	look	how	we	can	apply	this	in	a	useful	way:
●								Analytic	Line
●								DAX
●								R	Visual

Analytic	Line
For	certain	visualisations	Power	BI	offers	us	to	apply	Analytics.	In	the	case	of	a
line	chart	we	can	apply	the	following:
●								Trend	line
●								Constant	line
●								Min	line
●								Max	line
●								Average	line
●								Median	line
●								Percentile	line

Figure	11-02:	Analytic	Trend	Line
The	first	entry,	trend	line,	automatically	calculates	and	displays	a	simple	linear
regression	line,	as	discussed	above	and	as	we	can	see	in	the	following	screenshot
as	a	straight,	dotted	black	line.

Figure	11-03:	Sales	Amount	by	Date	and	Analytic	Trend	Line
To	apply	the	trend	line,	we	don’t	even	have	to	know	what	simple	linear
regression	is	or	how	to	calculate	it.	That’s	good	for	that	matter.	The	only
disadvantage	is:	Even	when	we	know	how	to	calculate	it,	we	cannot	influence
the	calculation	of	the	trend	line	in	any	way.	If	you	are	satisfied	with	the	trend
line	how	it	is,	then	go	for	it.	If	you	are	not	satisfied	with	the	calculation,	you
can’t	do	anything	here,	but	make	use	of	DAX	or	R,	which	is	explained	below.
Exercise:	Try	out	the	other	available	analytic	lines	as	well.	In	what	use	cases
they	could	be	of	help	for	your	existing	reports?

DAX
Daniil	Maslyuk	describes	an	implementation	of	simple	linear	regression	in	DAX
in	his	blog	(https://xxlbi.com/blog/simple-linear-regression-in-dax/).	The	DAX
formula	is	quite	lengthy,	text-wise,	as	Daniil	made	use	of	variables,	which	helps
to	understand	the	single	elements	of	the	formula:
Simple	Linear	Regression	=	
/*	Simple	linear	regression	via	DAX	by	Daniil	Maslyuk	
	*	https://xxlbi.com/blog/simple-linear-regression-in-dax/
	*/

https://xxlbi.com/blog/simple-linear-regression-in-dax/

VAR	Known	=
				FILTER	(
								SELECTCOLUMNS	(
												ALLSELECTED	('Date'[Date]),
												"Known[X]",	'Date'[Date],
												"Known[Y]",	[Sales	Amount]
),
								AND	(
												NOT	(ISBLANK	(Known[X])),
												NOT	(ISBLANK	(Known[Y]))
)
)
VAR	Count_Items	=
				COUNTROWS	(Known)
VAR	Sum_X	=
				SUMX	(Known,	Known[X])
VAR	Sum_X2	=
				SUMX	(Known,	Known[X]	^	2)
VAR	Sum_Y	=
				SUMX	(Known,	Known[Y])
VAR	Sum_XY	=
				SUMX	(Known,	Known[X]	*	Known[Y])
VAR	Average_X	=
				AVERAGEX	(Known,	Known[X])
VAR	Average_Y	=
				AVERAGEX	(Known,	Known[Y])
VAR	Slope	=
				DIVIDE	(
								Count_Items	*	Sum_XY	-	Sum_X	*	Sum_Y,
								Count_Items	*	Sum_X2	-	Sum_X	^	2
)
VAR	Intercept	=
				Average_Y	-	Slope	*	Average_X
RETURN
								SUMX	(
								DISTINCT	('Date'[Date]),
								Intercept	+	Slope	*	'Date'[Date]

)
Figure	11-04:	Simple	Linear	Regression	in	DAX
When	you	use	the	DAX	measure	as	it	is,	you	will	end	up	with	the	very	same
trend	line	as	with	the	analytic	line	in	the	example	above,	but	with	two
exceptions.	One,	the	trend	line	continues	over	the	whole	of	the	dates	available	in
your	date-table	(even	if	there	are	not	actual	values	available	for	that	time-frame).
In	the	screenshot	(Figure	11-1)	the	blue	trend	line	is	continued	until	end	of	2014:
Second,	we	can	freely	influence	the	trend	line	by	pushing	the	right	buttons.	In
the	following	example	I	introduced	the	following:
a)	A	filter	for	the	calculation	of	variable	Known.	Therefore	the	calculation	of	the
trend	line	is	not	based	on	all	of	the	available	actual	sales,	but	limited	to	sales
from	2013	only.	As	the	trend	for	year	2013	is	negative,	the	trend	line	now	points
down.
And	b),	another	filter	in	the	RETURN	expression,	as	well.	This	filter	returns
values	for	dates	after	January	1	2013,	only.	Therefore,	the	trend	line	starts	not
anymore	at	the	very	left	of	the	chart,	but	in	year	2013.	I	marked	the	changes	in
bold	font:
Simple	Linear	Regression	2	=	
/*	Simple	linear	regression	2	via	DAX	
	*	based	on	formula	by	Daniil	Maslyuk	
	*	https://xxlbi.com/blog/simple-linear-regression-in-dax/
	*/
VAR	Known	=
				FILTER	(
								SELECTCOLUMNS	(
												FILTER	(ALLSELECTED	('Date'[Date]);	'Date'[Date]	>=
DATE(2013;	01;	01));
												"Known[X]",	'Date'[Date],
												"Known[Y]",	[Sales	Amount]
),
								AND	(
												NOT	(ISBLANK	(Known[X])),
												NOT	(ISBLANK	(Known[Y]))
)
)

VAR	Count_Items	=
				COUNTROWS	(Known)
VAR	Sum_X	=
				SUMX	(Known,	Known[X])
VAR	Sum_X2	=
				SUMX	(Known,	Known[X]	^	2)
VAR	Sum_Y	=
				SUMX	(Known,	Known[Y])
VAR	Sum_XY	=
				SUMX	(Known,	Known[X]	*	Known[Y])
VAR	Average_X	=
				AVERAGEX	(Known,	Known[X])
VAR	Average_Y	=
				AVERAGEX	(Known,	Known[Y])
VAR	Slope	=
				DIVIDE	(
								Count_Items	*	Sum_XY	-	Sum_X	*	Sum_Y,
								Count_Items	*	Sum_X2	-	Sum_X	^	2
)
VAR	Intercept	=
				Average_Y	-	Slope	*	Average_X
RETURN
				CALCULATE	(
								SUMX	(
								DISTINCT	('Date'[Date]),
								Intercept	+	Slope	*	'Date'[Date]
);
								FILTER	('Date';	'Date'[Date]	>=	DATE(2013;	01;	01))
)
Figure	11-05:	Simple	Linear	Regression	in	DAX	with	filters	applied
Exercise:	Create	a	DAX	measure	for	each	of	the	other	available	analytic	lines	(e.
g.	min	line,	max	line,	average	line,	etc.).	Change	the	formula	a)	to	adopt	the
calculation	to	only	a	certain	time	frame	(e.	g.	calculating	the	min	line	for	year
2013	only)	and	b)	to	adopt	the	length	of	the	line	to	only	a	certain	time	frame	(e.
g.	showing	the	min	line	only	along	2013).

R	Visual

Note:	While	the	R	visual	is	a	standard	visual	in	Power	BI	and	automatically
available,	you	need	a	local	instance	of	R	installed	on	your	computer.	Please
follow	instructions	at	https://mran.microsoft.com/	on	how	to	install	(a	free	copy)
of	R.	As	I	make	use	of	libraries	 ggplot2 ,	 scales 	and	(later)	 tm 	in	my
examples,	make	sure	to	install	those	libraries	as	well.	I	would	recommend	to
install	an	R	IDE	(e.	g.	R	studio)	and	to	run	the	following	statement:
“ install.packages("ggplot2",	"scales",	"tm") ”.
In	the	following	example,	I	created	a	R	visual,	which	runs	the	script	listed	below.
I	make	use	of	the	 ggplot2 	library	to	visualize	the	actual	sales	amount	over	date
(green	line).	Via	function	 stat_smooth 	I	let	 ggplot() 	calculate	a	simple
regression	line	(“ method=lm ”),	shown	as	blue	line.	By	default,	 ggplot 	is
showing	a	confidence	interval	(grey	area	along	the	blue	line)	as	well,	which	can
be	turned	off	(by	adding	parameter	“ se=FALSE ”	to	 stat_smooth).

Figure	11-06:	Simple	Linear	Regression	in	an	R	Visual
#	Simple	Linear	Regression	in	R	Visual
	
#	data	cleaning
FactResellerSales	<-	dataset

https://mran.microsoft.com/

colnames(FactResellerSales)	<-	c("OrderDate",	"SalesAmount")
FactResellerSales	<-	FactResellerSales[FactResellerSales$OrderDate!="",]
FactResellerSales$OrderDate	<-	as.POSIXct(FactResellerSales$OrderDate)
	
#	adding	a	regression	line
library(ggplot2)
library(scales)	#generic	plot	scaling	methods
ggplot(FactResellerSales,
							aes(x	=	OrderDate,
											y	=	SalesAmount))	+
		geom_line(color	=	3)	+
		theme(text	=	element_text(size	=	18))	+
		scale_y_continuous(limits	=	c(0,	5000000),	labels	=	comma)	+
		theme(legend.position	=	"none")	+
		labs(x	=	"Order	Date",
							y	=	"Sales	Amount")	+
		stat_smooth(method=lm)	#	linear	model	/	linear	regression
	
Figure	11-07:	R	script	do	display	sales	amount	over	date	and	a	simple	linear
regression	line
Exercise:	With	the	search	engine	of	your	choice	find	out	which	other	methods
stat_smooth 	allows.	Try	them	out	and	evaluate	if	those	methods	give	a	better
fitting	line.

Summary
In	this	chapter	we	looked	into	different	implementations	of	simple	linear
regression.	We	added	a	trend	line	to	our	line	chart	via	Power	BI’s	analytic
features.	This	is	easy	to	apply,	but	does	not	offer	much	flexibility,	according	to
the	calculation	and	display	of	the	line.	To	achieve	flexibility,	we	then	calculated
simple	regression	via	the	help	of	both,	DAX	and	R.	The	implementation	in	DAX
is	straight	forward,	if	you	are	used	to	writing	DAX.	The	implementation	in	R
was	done	with	 stat_smooth 	function	available	as	part	of	the	 ggplot 	library.

Text	Mining
In	this	example	we	are	going	to	analyse	the	product	description	column.	The
description	consists	of	shorter	and	longer	texts.	I	combined	the	product’s
EnglishProductName	and	EnglishProductDescription	into	a	new	column
EnglishProductNameAndDescription,	as	the	description	column	might	be	empty
for	some	of	the	columns,	while	there	is	always	a	product	name.
If	you	add	the	description	to	an	ordinary	table	visual,	it	is	hard	to	compare
different	products	or	get	an	idea	how	those	descriptions	differ	between	different
product	categories.	Therefore,	we	are	going	to	“mine”	the	content	of	the	column.

Word	Cloud
I	assume,	that	the	more	important	a	term	in	a	text	is,	the	more	often	it	will	appear
in	the	text.	A	word	cloud	visual	counts	how	often	a	term	is	mentioned.	Terms
with	a	higher	count	are	printed	in	a	bigger	font	size	and	appears	more	towards
the	centre	than	the	others.	I’ve	included	a	screenshot	below:

Figure	11-08:	Word	cloud	of	column	EnglishProductNameAndDescription
This	is	easy	to	apply	but	comes	with	strings	attached:	In	the	English	language
certain	words,	like	“and”,	“the”,	“a”,	“for”,	“on”,	“of”,	or	“with”	are	very
common.	Therefore,	they	are	also	more	common	in	the	product	descriptions.	But

as	they	are	not	special	for	a	certain	product	category,	we	would	rather	like	to
remove	them	from	the	word	cloud.	That’s	what	we	are	going	to	do	with	the	help
of	the	following	technologies:
●								Azure	Cognitive	Services
●								Azure	Machine	Learning
●								R	Visual

Azure	Cognitive	Services
Azure	Cognitive	Services	is	Microsoft’s	offer	for	so-called	pre-trained	models.
Microsoft’s	data	science	team	is	developing	and	publishing	an	ever-growing
amount	of	different	services,	which	are	used	internally	as	well	(e.	g.	to	localize
the	online	documentation	at	docs.microsoft.com).	“Pre-trained”	means,	that
Microsoft	took	care	of	tuning	the	models.	This	guarantees	a	high	level	of	quality
for	lot	of	use	cases.	Currently	Azure	Cognitive	Services	offers	different	features
like	decision-making,	vision,	speech,	search,	and	language.	The	latter	offers
services	like	Text	Analytics,	Translator	Text,	QnA	Maker,	Language
Understanding,	and	Immersive	Reader.	For	our	use	case	we	will	leverage	“key
phrase”,	which	is	part	of	the	“Text	Analytics”	offer.
To	make	use	of	Azure	Cognitive	Services	you	need	to	go	through	the	following
steps:
●								Sign-in	to	portal.azure.com	and	add	“Cognitive	Services”	to	one	of	your

subscriptions.
●								For	later	reference	we	will	need	one	of	the	both	generated	keys	and	the

API	endpoint.	Both	can	be	obtained	by	opening	the	newly	created
Cognitive	Services.

●								I	created	a	parameter	in	Power	Query	for	both:	apikey	and	endpoint.	This
makes	it	easier	later	in	case	you	have	several	references	to	both	and	want
to	change	them.

Figure	11-09:	Where	to	find	API	key	and	endpoint	of	Cognitive	Services	in
Azure’s	portal
Create	a	function	in	Power	Query	by	creating	a	new	query	and	choosing	“Blank
query”.	Then	you	insert	the	following	script	in	the	Advanced	editor.	I	took	this
script	from	Microsoft’s	online	documentation	and	changed	the	assignment	of
apikey 	and	 endpoint 	to	use	the	Power	Query	parameters,	created	in	the	step
above.	The	script	is	accepting	one	parameter	(text),	converting	it	into	a	JSON
format,	sending	it	to	Cognitive	Services	by	using	 apikey 	and	 endpoint 	and
converting	the	returned	JSON	value	back	into	a	textfield.	Make	sure	to	rename
the	query	to	“Keyphrase	API”.
//	https://docs.microsoft.com/en-us/azure/cognitive-services/text-
analytics/tutorials/tutorial-power-bi-key-phrases
//	Returns	key	phrases	from	the	text	in	a	comma-separated	list
(text)	=>	let
				apikey						=	apikey,
				endpoint				=	endpoint	&	"/keyPhrases",
				jsontext				=	Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text),
5000))),
				jsonbody				=	"{	documents:	[{	language:	""en"",	id:	""0"",	text:	"	&	jsontext
&	"	}]	}",

				bytesbody			=	Text.ToBinary(jsonbody),
				headers					=	[#"Ocp-Apim-Subscription-Key"	=	apikey],
				bytesresp			=	Web.Contents(endpoint,	[Headers=headers,
Content=bytesbody]),
				jsonresp				=	Json.Document(bytesresp),
				keyphrases		=	Text.Lower(Text.Combine(jsonresp[documents]{0}
[keyPhrases],	",	"))
in		keyphrases
	
Figure	11-10:	Power	Query	function	which	accepts	a	text	parameter	and
returns	the	key	phrases
This	Power	Query	function	we	can	now	apply	on	any	column	in	any	Power
Query.	Select	a	column	of	type	text	and	then	select	“Add	column”	in	the	menu
and	“Invoke	Custom	Function”	in	the	ribbon.	Give	the	resulting	column	a	useful
name	(e.	g.	“keyphrases”)	and	select	“Keyphrase	API”	as	“Function	query”.	As
soon	as	you	click	OK	every	single	row	of	your	Power	Query	will	be	sent	over	to
Cognitive	Services	and	the	parsed	key	phrases	are	returned	back	to	Power	Query.

Figure	11-11:	Invoke	custom	function	“Keyphrases	API”	on	column
EnglishProductNameAndDescription
Please	be	aware	of	two	facts:	One,	costs	will	be	charged	to	your	Azure
subscription	every	time	you	refresh	Power	Query.	Please	refer	to	“pricing	tier”	to
find	out	about	how	much.	In	my	subscription	I	will	currently	be	charged	EUR
0.84	per	1000	calls	to	the	API,	but	there	are	trial	subscriptions	available	which

give	you	a	limited	amount	of	credits	free	of	charge.
Second,	the	content	of	the	column	you	are	invoking	Cognitive	Services	on	is
sent	over	the	internet	to	Azure.	In	case	this	would	violate	any	privacy
restrictions,	please	consider	running	Cognitive	Services	in	a	container	on	your
premises	instead.
In	cases	where	you	want	to	build	upon	a	pre-trained	model	or	come	up	with	a
model	on	your	own,	you	must	consider	one	of	the	following	options:	Azure
Machine	Learning	or	R.

Azure	Machine	Learning
Azure	Machine	Learning	allows	you	to	build	your	own	experiments	by	using
different	building	blocks	and	deploying	the	experiment	as	a	web	service	which
can	be	called	by	your	application.	We	will	build	a	Machine	Learning	experiment,
deploy	it	and	then	call	it	in	Power	Query	now.
In	the	first	example	we	will	make	use	of	a	building	block	“Extract	Key	Phrases
from	Text”.	This	is	based	on	the	same	pre-trained	model	as	we	used	above	in
Cognitive	Services.	The	extracted	key	phrases	will	therefore	be	the	same.	Azure
Machine	Learning	gives	though	the	option	to	clean	and	transform	the	data	before
and	after	the	building	block,	which	I	will	not	do	in	this	first	example	to	keep	it
simple.	(In	the	next	chapter	we	will	build	our	own	algorithm	to	extract	key
phrases.)
As	you	can	see	in	the	screenshot	below,	I	used	“Book	reviews	from	Amazon”	as
a	basis	for	my	experiment.	This	dataset,	and	many	more,	are	available	by	default
so	you	can	easily	start	experimenting.	Then	I	used	the	step	“Edit	metadata”	to
rename	the	columns	of	the	dataset	to	“ProductKey”	and
“EnglishProductNameAndDescription”	to	match	the	column	names	of	my
dataset	I	will	later	use	in	Power	Query.	“Partition	and	Sample”	allows	me	to
combine	both,	“Book	reviews	from	Amazon”	and	“Web	service	input”	into	one
set	of	rows.	Then	I	“Extract	Key	Phrases	from	Text”	and	combine	the	discovered
keyphrases	with	the	original	two	columns	“ProductKey”	and
“EnglishProdctNameAndDescription”.	Finally,	“Web	services	output”	makes
sure	to	send	all	three	columns	back	to	the	caller	of	the	web	service.

Figure	11-12:	An	Experiment	in	Azure	Machine	Learning	Studio	to	extract
key	phrases
Before	you	can	finally	press	the	button	“deploy	web	service”,	you	first	have	to
press	button	“run”	to	run	the	experiment	once.
When	in	“experiment	view”	()	the	blue	lines	and	the	web	service	component
are	ignored,	so	the	experiment	is	not	waiting	for	a	web	service	call	or	returning
data.	When	in	“web	service	view”	(),	on	the	other	hand,	the	“Book	reviews
from	Amazon”	and	the	“Edit	Metadata”	is	ignored,	so	the	web	service	result	is
not	influenced	from	the	data	of	the	experiment.
Before	we	can	incorporate	a	call	to	our	new	web	service	in	Power	Query	with
the	method	I	will	describe	in	a	minute,	we	must	gather	two	important	parameters
of	the	web	service:	API	key	of	the	web	service	and	the	request	URI	of	the	API.	I
created	Power	Query	parameters	for	both:	WebServiceAPIKey	and	RequestURI.

Figure	11-13:	Where	to	find	API	key	and	request	URI	of	Azure	Machine
Learning	web	service
While	different	possibilities	of	calling	a	Azure	ML	web	service	from	Power
Query	are	available,	I	prefer	Gerhard	Brückl’s	approach
(https://blog.gbrueckl.at/2016/06/score-powerbi-datasets-dynamically-azure-
ml/).	Basically,	he	wrote	three	Power	Query	functions:	One	to	convert	Power
Query	data	into	JSON	(ToAzureMLJson),	one	to	convert	a	JSON	into	a	Power
Query	table	(AzureMLJsonToTable)	and	one	to	call	Azure	ML’s	API	and	making
use	of	the	first	two	functions	(CallAzureMLService).	You	can	read	more	details
about	that	in	his	excellent	blog	post.
The	rest	of	the	steps	are	like	those	described	in	the	previous	chapter	of	applying
a	function	on	a	column	in	Power	Query.	The	function	CallAzureMLService	takes
the	web	service’s	API	key	and	the	request	URI	as	a	parameter	(just	select	the
Power	Query	Parameter	for	that).	Furthermore,	we	must	pass	in	the	name	of	a
table,	which	must	consist	of	exactly	those	two	columns	we	defined	for	the	input
of	the	web	service,	with	exactly	the	same	name	and	data	type.	The	function	then
returns	the	two	columns	plus	an	extra	one,	containing	the	key	phrases.
Please	be	aware	of	two	facts:	Costs	will	be	charged	to	your	Azure	subscription
every	time	you	refresh	Power	Query.	Please	refer	to	“pricing	tier”	to	find	out

https://blog.gbrueckl.at/2016/06/score-powerbi-datasets-dynamically-azure-ml/

about	how	much.	I	used	a	free	subscription	of	Azure	ML,	which	allows	for	only
a	limited	amount	of	calls,	which	was	sufficient	for	my	sample.	
Second	the	content	of	the	whole	table	selected	in	the	third	parameter	of	the
Power	Query	function	CallAzureMLService	is	sent	over	the	internet	to	Azure.
Currently	there	is	no	on-premise	alternative	(e.	g.	containers)	available	for	Azure
ML.

Figure	11-14:	Word	cloud	based	on	Cognitive	Services’	key	phrases

R	in	Azure	Machine	Learning
In	cases	the	available	machine	learning	algorithms	in	Azure	Machine	Learning
are	not	sufficient	for	your	use	case	you	can	always	plug	in	R	code	into	it.	You
can	use	R	to	create	both,	a	model,	and	to	run	a	R	script	in	Azure	Machine
Learning.	The	following	example	will	show	you,	how	you	can	extract	key
phrases	via	R.	I	copied	the	experiment	from	above	and	exchanged	the	“Extract
Key	Phrases	from	Text”	with	“Execute	R	Script”.	You	can	find	the	R	script	here:
#	Map	1-based	optional	input	ports	to	variables
dataset	<-	maml.mapInputPort(1)	#	class:	data.frame
	
library(tm)

corpus_clean	<-
VCorpus(VectorSource(dataset$EnglishProductNameAndDescription))
corpus_clean	<-	tm_map(corpus_clean,	content_transformer(tolower))	#	apply	r-
standard	function	tolower()	to	content
corpus_clean	<-	tm_map(corpus_clean,	stemDocument)
corpus_clean	<-	tm_map(corpus_clean,	stripWhitespace)	#	eliminate	unneeded
whitespace
corpus_clean	<-	tm_map(corpus_clean,	removeNumbers)	#	apply	tm's
removeNumbers	to	content
corpus_clean	<-	tm_map(corpus_clean,	removeWords,	stopwords())	#	remove
stop	words
corpus_clean	<-	tm_map(corpus_clean,	removePunctuation)	#	remove
punctuation
corpus_clean	<-	tm_map(corpus_clean,	stemDocument)
corpus_clean	<-	tm_map(corpus_clean,	stripWhitespace)	#	eliminate	unneeded
whitespace
	
#	Select	data.frame	to	be	sent	to	the	output	Dataset	port
df	<-	data.frame(text	=	sapply(corpus_clean,	paste,	collapse	=	"	"),
stringsAsFactors	=	FALSE)
maml.mapOutputPort("df")
	
Figure	11-15:	R	script	to	fetch	Azure	ML’s	input,	find	key	phrases	and
return	them	as	output
After	running	the	experiment	and	deploying	it	as	a	web	service	you	have	to	then
grab	the	API	key	of	the	web	service	and	the	request	URI	of	the	API	and	apply
Power	Query	function	CallAzureMLService	exactly	as	described	in	the	previous
chapter.
Before	you	write	your	own	R	scripts	to	run	in	Azure	Machine	Learning,	please
check	if	the	libraries	you	want	to	use	are	available	in	Azure.	Find	a	list	of
available	libraries	here:	https://docs.microsoft.com/en-us/azure/machine-
learning/studio-module-reference/r-packages-supported-by-azure-machine-
learning.
Again:	This	is	an	easy	way	to	share	a	functionality	across	different	Power	BI
files	and	can	be	applied	in	Excel	or	your	own	application	as	well.	Costs	apply	for
every	call	of	the	web	service	and	data	is	exposed	over	the	internet.	If	you	want	to
avoid	those	costs	and	the	exposure	over	the	internet	you	can	incorporate	the	R

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/r-packages-supported-by-azure-machine-learning

script	directly	as	a	Power	Query	transformation	step,	as	described	in	the
following	chapter.

R	as	a	Power	Query	Transformation
We’ve	already	seen	in	the	chapter	about	linear	regression	that	we	can	write	R
code	to	run	in	an	R	visual.	Power	BI	offers	two	more	possibilities,	to	directly
inject	R	code:	R	source	and	R	transformation	in	Power	Query.	Let’s	check	out	R
transformation	in	the	next	example.
In	the	Power	Query	window	find	the	table	containing	the	column
“EnglishProductNameAndDescription”	and	select	“Transform”	in	the	menu	and
select	“Run	R	script”	in	the	Ribbon.	Then	copy	&	paste	the	script	from	above,
where	I	only	removed	the	first	and	last	line	of	code,	which	controlled	the
communication	between	Azure	ML	and	R.	In		R	transformation	there	is	no	need
for	calling	special	functions	(like	 maml.mapInputPort 	or
maml.mapOutputPort),	as	all	the	columns	and	rows	available	in	the	current
Power	Query	are	injected	as	a	data	frame	with	name	“dataset”	into	the	script:
library(tm)
corpus	<-
VCorpus(VectorSource(dataset$EnglishProductNameAndDescription))
corpus_clean	<-	tm_map(corpus,	content_transformer(tolower))	#	apply	r-
standard	function	tolower()	to	content
corpus_clean	<-	tm_map(corpus_clean,	stemDocument)
corpus_clean	<-	tm_map(corpus_clean,	stripWhitespace)	#	eliminate	unneeded
whitespace
corpus_clean	<-	tm_map(corpus_clean,	removeNumbers)	#	apply	tm's
removeNumbers	to	content
corpus_clean	<-	tm_map(corpus_clean,	removeWords,	stopwords())	#	remove
stop	words
corpus_clean	<-	tm_map(corpus_clean,	removePunctuation)	#	remove
punctuation
corpus_clean	<-	tm_map(corpus_clean,	stemDocument)
corpus_clean	<-	tm_map(corpus_clean,	stripWhitespace)	#	eliminate	unneeded
whitespace
	
Figure	11-16:	R	script	to	find	key	phrases
This	solution	runs	completely	locally	–	there	are	no	additional	costs	during
refresh	and	no	data	leaves	your	laptop.	But	this	comes	on	the	price	of	less

reusability,	as	you	have	to	duplicate	the	code	in	every	Power	BI	file.	Applying
changes	to	the	code	can	be	challenging,	as	you	must	maintain	different	copies	of
the	code.
The	R	code	is	executed	only	once	during	refresh	and	cannot	be	influenced	by
filters.	If	the	R	script	needs	to	be	parametrized	by	user	selection,	we	can	us	a	R
visual	instead.

R	Visual
You’ve	already	seen	a	R	visual	above,	when	we	used	 ggplot 	to	calculate	and
draw	the	regression	line.	We	can	do	the	same	for	our	key	phrases	and	the	word
cloud.
The	code	below	to	extract	the	key	phrases	is	the	same	as	above,	except	that	it	has
lines	of	code	added	to	create	a	word	cloud	visual:
library(tm)
corpus	<-
VCorpus(VectorSource(dataset$EnglishProductNameAndDescription))
corpus_clean	<-	tm_map(corpus,	content_transformer(tolower))	#	apply	r-
standard	function	tolower()	to	content
corpus_clean	<-	tm_map(corpus_clean,	stemDocument)
corpus_clean	<-	tm_map(corpus_clean,	stripWhitespace)	#	eliminate	unneeded
whitespace
corpus_clean	<-	tm_map(corpus_clean,	removeNumbers)	#	apply	tm's
removeNumbers	to	content
corpus_clean	<-	tm_map(corpus_clean,	removeWords,	stopwords())	#	remove
stop	words
corpus_clean	<-	tm_map(corpus_clean,	removePunctuation)	#	remove
punctuation
corpus_clean	<-	tm_map(corpus_clean,	stemDocument)
corpus_clean	<-	tm_map(corpus_clean,	stripWhitespace)	#	eliminate	unneeded
whitespace
	
library(wordcloud)
library(RColorBrewer)
wordcloud(corpus_clean,	min.freq	=	1,	random.order	=	FALSE,
colors=brewer.pal(9,	"BuGn"))
	
Figure	11-17:	R	script	to	find	key	phrases	and	plot	them	in	a	word	cloud

Figure	11-18:	Word	cloud	based	on	key	phrases	discovered	by	R’s	 tm
package

Summary
In	this	chapter	we	have	seen	different	possibilities	to	extract	key	phrases	out	of	a
free	text	column	(the	concatenated	product	name	and	description).	Every
solution	had	its	own	strengths	and	weaknesses,	as	shown	in	the	following	table:

	 Cognitive
Services

Azure
ML	Key
Phrase

Azure
ML	R

Power	Query	R
Transformation

Power
BI
R	visual

Additional
Costs

Apply Apply Apply No No

Data	is	sent
over	the
internet

Yes	*) Yes Yes No No

Reuseability Yes Yes Yes No No
Calculation Data

refresh
Data
refresh

Data
refresh

Data	refresh Visual
refresh

User	filter No No No No Apply
Pre-trained
vs.	self-
trained
Model

Pre-
trained

Pre-
trained

Self-
trained

Self-trained Self-
trained

*)	You	can	run	Cognitive	Services	in	a	container	on	premises	to	avoid	exposure
of	data.
	

About	the	Author

Markus	Ehrenmüller-Jensen	is	the	founder	of	Savory	Data	and	works	as	a
project	leader,	trainer	&	consultant	for	data	engineering,	business	intelligence,
and	data	science	since	1994.	He	is	an	educated	software-engineer,	graduated
business	educator	and	professor	for	databases	and	project	engineering	at	HTL
Leonding	(technical	college)	and	certified	as	MCSE	Data	Platform,	MCSE
Business	Intelligence,	and	MCT.	Markus	speaks	regularly	on	international
conferences	(eg.	PASS	Summit,	SQLBits,	SQL	Saturdays,	SQL	Days,	Power	BI
World	Tour,	...)	and	writes	articles	for	well-known	journals.	In	2013	he	co-
founded	SQL	PASS	Austria	and	in	2015	Austria	PUG	and	organizes	SQL
Saturdays	in	Austria	since	2014.	For	his	technical	leadership	in	the	community
he	was	awarded	as	a	Microsoft	Data	Platform	MVP	since	2017.

Chapter	12:	Automated	Machine	Learning	in	Power	BI
	
Author:	Ashraf	Ghonaim
Microsoft	 is	 committed	 to	 democratizing	 AI	 through	 its	 products	 by	 making
automated	machine	learning	accessible	through	Power	BI,	so	that	Data	Analysts
and	BI	professionals	 can	also	 take	advantage	of	machine	 learning	and	become
Citizen	Data	Scientists.
With	 Automated	 Machine	 Learning	 (AutoML),	 the	 data	 science	 behind	 the
creation	 of	ML	models	 is	 automated	 by	 Power	BI,	with	 precautions	 to	 ensure
model	quality,	and	visibility	to	have	full	insight	into	the	steps	used	to	create	the
ML	model.
	

What	is	Machine	Learning	(ML)?
Among	so	many	definitions,	Machine	Learning	can	be	defined	as:	"The	field	of
study	 that	 gives	 computers	 the	 ability	 to	 learn	 without	 being	 explicitly
programmed”	-	Arthur	Samuel	(1959)
ML	 algorithms	 learn	 from	 the	 historical	 data	 to	 build	 models	 that	 predict	 the
future.	ML	at	 its	heart	 is	 a	probabilistic	not	 a	deterministic	 science	because	of
generalization	based	on	probabilities.	That	means	any	ML	model	has	a	margin	of
error	and	accuracy	level.		
The	 role	 of	 a	 data	 scientist	 is	 to	 come	up	with	 the	model	 that	 has	 the	 highest
level	of	possible	accuracy	of	predicting	the	outcome	of	the	new	unseen	data.
To	 be	 able	 to	 achieve	 that,	 the	 data	 scientist	 has	 to	 split	 the	 data	 to	 training
dataset	and	testing	dataset.	Then,	try	several	ML	algorithms	and	tweak	so	many
parameters	 based	 on	 their	 human	 expertise	 to	 train	multiple	models.	 The	 data
scientist	compares	the	results	of	different	trained	models	using	the	testing	dataset
that	 includes	unseen	 labeled	data	and	finally	picks	 the	model	 that	achieved	 the
highest	level	of	accuracy.

What	are	the	challenges	of	Traditional	ML?
Traditional	 ML	 model	 development	 process	 is	 resource-intensive,	 requiring
significant	 domain	 knowledge	 and	 time	 to	 produce	 and	 compare	 dozens	 of
models.	
Data	 scientists	 and	 developers	 face	 a	 series	 of	 sequential	 and	 interconnected
decisions	 along	 the	way	 to	 achieving	 "magic"	machine	 learning	 solutions.	 For
example,	 should	 they	 transform	 the	 input	 data,	 and	 if	 so,	 how	 –	 by	 removing
nulls,	 rescaling,	 or	 something	 else	 entirely?	What	machine	 learning	 algorithm
would	be	best	-	a	support	vector	machine	(SVM),	logistic	regression,	or	a	tree-
based	classifier?	What	parameter	values	should	they	use	for	the	chosen	classifier
–	including	decisions	such	as	what	the	max	depth	and	min	split	count	should	be
for	a	tree-based	classifier?	And	many	more.
Ultimately,	 all	 these	 decisions	 will	 determine	 the	 accuracy	 of	 the	 machine
learning	 pipeline	 -	 the	 combination	 of	 data	 pre-processing	 steps,	 learning
algorithms,	 and	 hyperparameter	 settings	 that	 go	 into	 each	 machine	 learning
solution.

What	is	Automated	Machine	Learning	(AutoML)?
Automated	 machine	 learning,	 also	 referred	 to	 as	 AutoML,	 is	 the	 process	 of
automating	 the	 time	 consuming,	 iterative	 tasks	 of	 ML	 model	 development
process.	 It	 allows	data	 scientists,	 analysts,	 and	developers	 to	build	ML	models
with	high	scale,	efficiency,	and	productivity	all	while	sustaining	model	quality.
AutoML	 democratizes	 the	ML	model	 development	 process,	 and	 empowers	 its
users,	no	matter	 their	data	science	expertise,	 to	 identify	an	end-to-end	machine
learning	pipeline	for	any	problem.
Data	scientists,	analysts	and	developers	across	industries	can	use	AutoML	to:

Implement	 machine	 learning	 solutions	 without	 extensive	 programming
knowledge
Save	time	and	resources
Leverage	data	science	best	practices
Provide	agile	problem-solving

AutoML	empowers	Power	BI	 users,	with	 or	without	 data	 science	 expertise,	 to
identify	 an	 end-to-end	 machine	 learning	 pipeline	 for	 any	 problem,	 achieving
higher	accuracy	while	spending	far	 less	of	 their	 time.	 It	enables	a	significantly
larger	 number	 of	 experiments	 to	 be	 run,	 resulting	 in	 faster	 iteration	 towards
production-ready	intelligent	experiences.
AutoML	 is	 based	 on	 a	 breakthrough	 from	Microsoft	 Research.	 The	 approach
combines	ideas	from	collaborative	filtering	and	Bayesian	optimization	to	search
an	 enormous	 space	 of	 possible	 machine	 learning	 pipelines	 intelligently	 and
efficiently.	It's	essentially	a	recommender	system	for	machine	learning	pipelines.
Similar	 to	 how	 streaming	 services	 recommend	 movies	 for	 users,	 AutoML
recommends	machine	learning	pipelines	for	data	sets.

https://arxiv.org/abs/1705.05355

Automated	Machine	Learning	(AutoML)	in	Power	BI
There	are	several	options	to	do	Machine	Learning	in	Power	BI:
1-			Python/R	scripts
2-			Azure	Machine	Leaning	Studio	(Web	Service	API)
3-			Azure	Machine	Learning	Services	Integration
4-			Built-in	AutoML	(which	is	the	scope	of	this	chapter)

AutoML	 is	 done	 in	 Power	 BI	 through	 dataflows	 in	 Power	 BI	 Service	 in	 the
cloud.	Dataflows	offers	self-serve	data	prep	for	big	data.	AutoML	enables	you	to
leverage	your	data	prep	effort	 for	building	ML	models,	 right	within	Power	BI.
Dataflows	 is	 a	 simple	 and	 powerful	 ETL	 tool	 that	 enables	 analysts	 to	 prepare
data	 for	 further	 analytics.	 You	 invest	 significant	 effort	 in	 data	 cleansing	 and
preparation,	creating	datasets	that	can	be	used	across	your	organization.	AutoML
enables	you	to	leverage	your	data	prep	effort	for	building	ML	models	directly	in
Power	BI.
AutoML	 in	 Power	 BI	 dataflow	 allows	 to	 build	 ML	 models	 with	 clicks,	 not
code,	using	just	their	Power	BI	skills.	With	AutoML,	the	data	science	behind	the
creation	 of	ML	models	 is	 automated	 by	 Power	BI,	with	 precautions	 to	 ensure
model	quality,	and	visibility	to	have	full	insight	into	the	steps	used	to	create	your
ML	model.
AutoML	 for	 dataflows	 enables	 data	 analysts	 to	 train,	 validate	 and	 invoke	ML
models	directly	in	Power	BI.	It	includes	a	simple	experience	for	creating	a	new
ML	model	where	analysts	can	use	 their	dataflows	 to	specify	 the	 input	data	 for
training	the	model.	The	service	automatically	extracts	the	most	relevant	features,
selects	an	appropriate	algorithm	and	tunes	and	validates	the	ML	model.	After	a
model	 is	 trained,	 Power	 BI	 automatically	 generates	 a	 report	 that	 includes	 the
results	 of	 validation	 that	 explains	 the	performance	 and	 results	 to	 analysts.	The
model	can	then	be	invoked	on	any	new	or	updated	data	within	the	dataflow.
	

Figure	12-01:	AutoML	Getting	Started
AutoML	 in	 Power	 BI	 integrates	 AutoML	 from	 the	 Azure	 Machine	 Learning
service	 to	 create	 your	 ML	 models.	 However,	 you	 don't	 need	 an	 Azure
subscription	to	use	AutoML	in	Power	BI.	The	process	of	training	and	hosting	the
ML	models	is	managed	entirely	by	the	Power	BI	service.
AutoML	is	available	for	dataflows	in	workspaces	hosted	on	Power	BI	Premium
and	Embedded	capacities	only.	To	be	able	to	use	it,	you	have	to	turn	it	on	first	in
the	premium	capacity.

Enabling	AutoML	in	your	Power	BI	Premium	Subscription
One	of	the	goals	of	premium	capacity	is	to	give	customers	a	fine-grained	control
of	 exactly	 what	 is	 running	 in	 each	 capacity.	 Each	 capacity	 has	 dedicated
resources	assigned,	is	isolated	from	others,	and	can	only	run	generally	available
workloads	by	default.	So,	if	there	is	a	mission	critical	app	running	in	a	capacity,
administrators	 are	 able	 to	 constrain	 other	 functionality	 to	 get	 the	 performance
they	 need.	 For	 workloads	 in	 preview	 to	 run	 in	 a	 capacity,	 the	 capacity
administrator	 needs	 to	 enable	 them	 and	 configure	 the	 maximum	 memory
percentage	available	to	it.
Power	BI	AI	is	a	capacity	workload	and	must	be	enabled	before	the	features	can
be	 used.	 	 Note	 that	 this	 capacity	 workload	 includes	 Cognitive	 Services	 and
AutoML.	All	other	AI	 features	 such	as	Key	 Influencers	and	Quick	 Insights	do
not	require	a	premium	subscription.
You	must	be	the	Power	BI	Administrator	or	Capacity	Administrator	to	be	able	to
enable	the	Power	BI	AI	capacity	workload.	Select	the	gear	in	the	top	right	panel
and	click	on	“Admin	Portal”:

Figure	12-02:	Admin	Portal
Then	 click	 on	 the	 Capacity	 Settings	 on	 the	 left-hand	 panel	 on	 the	 subsequent
page:

Figure	12-03:	Capacity	Settings
Click	on	the	capacity	where	the	workload	is	to	be	enabled.	In	the	page	above,	it
is	“AICapacity1”:

Figure	12-04:	Capacity	Workloads
Note	 that	 you	 can	 assign	workspaces	 to	 this	 capacity	 after	 it	 is	 configured	 the
way	you	want.
Then	click	“Workloads”	under	“More	Options”	and	turn	both	Dataflows	and	AI
(Preview)	to	On	and	set	the	maximum	memory:

Figure	12-05:	Dataflows	and	AI	(Preview)
AutoML	 performs	 numerous	 AI	 calculations	 in	 memory.	 While	 the	 memory
needed	 depends	 on	 data	 size	 and	 content,	 it	 is	 a	 good	 idea	 to	 give	 a	 liberal

amount	 of	 memory	 for	 the	 AI	 workload.	 Our	 own	 testing	 was	 on	 5GB	 max
memory	or	higher	(or	100%	on	an	A2	node).
The	impact	of	enabling	each	workload	is	that	capacity	is	now	shared	–	memory
used	for	one	workload	may	not	be	available	for	others.
After	this	is	applied,	Cognitive	Services	and	AutoML	will	be	available	in	all	of
the	workspaces	in	the	selected	premium	capacity.

Creating	an	AutoML	Model	in	Power	BI
In	 the	 current	 preview,	 AutoML	 enables	 you	 to	 train	 ML	 models	 for	 Binary
Prediction,	Classification,	Regression	and	Forecasting	(coming	soon).

Figure	12-06:	Model	Types
Binary	Prediction,	Classification,	and	Regression	models	for	dataflows	are	types
of	 supervised	 ML	 models,	 which	 means	 that	 they	 learn	 from	 the	 known
outcomes	 of	 past	 observations	 to	 predict	 the	 outcomes	 of	 other	 new	 unseen
observations.	The	input	dataset	for	training	an	AutoML	model	is	a	set	of	records
that	are	labeled	with	the	known	outcomes.
After	 an	 ML	 model	 is	 trained,	 AutoML	 automatically	 generates	 a	 Power	 BI
report	 that	 explains	 the	 likely	 performance	 of	 your	 ML	 model.	 AutoML
emphasizes	 explainability,	 by	 highlighting	 the	 key	 influencers	 among	 your
inputs	 that	 influence	 the	 predictions	 returned	 by	 your	 model.	 The	 report	 also
includes	key	metrics	for	the	model,	depending	on	the	ML	model	type.
Other	pages	of	 the	generated	report	show	the	statistical	summary	of	 the	model
and	the	training	details.	The	statistical	summary	is	of	interest	to	users	who	would
like	to	see	the	standard	data	science	measures	of	performance	for	the	model.	The
training	details	summarize	all	the	iterations	that	were	run	to	create	your	model,
with	 the	associated	modeling	parameters.	 It	also	describes	how	each	 input	was
used	to	create	the	ML	model.
You	can	then	apply	your	ML	model	to	your	data	for	scoring.	When	the	dataflow
is	 refreshed,	 the	predictions	 from	your	ML	model	 are	 automatically	 applied	 to
your	data.	Power	BI	also	includes	an	individualized	explanation	for	each	specific
prediction	score	that	the	ML	model	produces.

Creating	an	AutoML	Model	Step	by	Step	
1-	Data	prep	for	creating	ML	Model:
Create	a	dataflow	for	the	data	with	the	historical	outcome	information,	which	is
used	for	training	the	ML	model.

Figure	12-07:	Create	Dataflow
In	the	current	release,	Power	BI	uses	data	from	only	a	single	entity	to	train	the
ML	model.	 So,	 if	 your	 historical	 data	 consists	 of	 multiple	 entities,	 you	 must
manually	 join	 the	 data	 into	 a	 single	 dataflow	 entity.	 You	 should	 also	 add
calculated	columns	for	any	business	metrics	that	may	be	strong	predictors	for	the
outcome	you're	trying	to	predict.

2-	Configuring	the	ML	Model	Inputs
AutoML	 has	 specific	 data	 requirements	 for	 training	 a	 ML	 model	 based	 on
respective	model	types.
To	create	an	AutoML	model,	select	the	ML	icon	in	the	"	Actions"	column	of	the
dataflow	entity	with	the	historical	data,	and	select	"Add	a	ML	model".

Figure	12-08:	Add	ML	model
A	 simplified	 experience	 is	 launched,	 consisting	 of	 a	 wizard	 that	 guides	 you
through	 the	 process	 of	 creating	 the	 ML	 model.	 The	 wizard	 includes	 the
following	simple	steps.
1-	 	 	Select	the	entity	with	the	historical	outcome	data,	and	the	field	for	which

you	want	a	prediction
2-			Choose	a	model	type	based	on	the	type	of	prediction	you'd	like	to	see
3-			Select	the	inputs	you	want	the	model	to	use	as	predictive	signals
4-			Name	your	model	and	save	your	configuration

The	 historical	 outcome	 field	 identifies	 the	 label	 attribute	 for	 training	 the	ML
model,	shown	in	the	following	image.
	

Figure	12-09:	Select	Outcome
	
When	you	specify	the	historical	outcome	field,	AutoML	analyzes	the	label	data
to	identify	the	types	of	ML	models	that	can	be	trained	for	that	data	and	suggests
the	most	likely	ML	model	type	that	can	be	trained.	Some	model	types	may	not
be	supported	for	the	data	that	you	have	selected.
AutoML	also	analyzes	all	 the	 fields	 in	 the	selected	entity	 to	suggest	 the	 inputs
that	can	be	used	for	training	the	ML	model.	This	process	is	approximate	and	is
based	on	statistical	analysis,	 so	you	should	 review	 the	 inputs	used.	Any	 inputs
that	 are	 directly	 dependent	 on	 the	 historical	 outcome	 field	 (or	 the	 label	 field)
should	 not	 be	 used	 for	 training	 the	 ML	 model,	 since	 they	 will	 affect	 its
performance.

Figure	12-10:	Select	Inputs
In	the	final	step,	you	can	name	the	model	and	save	its	settings.	At	this	stage,	you
are	prompted	 to	 refresh	 the	dataflow,	which	begins	 the	 training	process	 for	 the
ML	model.

3-	ML	Model	Training
Training	 of	 AutoML	 models	 is	 a	 part	 of	 the	 dataflow	 refresh.	 AutoML	 first
prepares	 your	 data	 for	 training.	AutoML	 splits	 the	 historical	 data	 you	 provide
into	a	training	and	testing	datasets.	The	test	dataset	is	a	holdout	set	that	is	used
for	 validating	 the	 model	 performance	 after	 training.	 These	 are	 realized
as	Training	 and	Testing	 entities	 in	 the	dataflow.	AutoML	uses	 cross-validation
for	the	model	validation.
Next,	each	input	field	is	analyzed	and	imputation	is	applied,	which	replaces	any
missing	 values	 with	 substituted	 values.	 A	 couple	 of	 different	 imputation
strategies	are	used	by	AutoML.	Then,	any	required	sampling	and	normalization
are	 applied	 to	 your	 data.	 AutoML	 applies	 several	 transformations	 at	 each
selected	input	field	based	on	its	data	type,	and	its	statistical	properties.	AutoML
uses	these	transformations	to	extract	features	for	use	in	training	your	ML	model.
The	 training	 process	 for	 AutoML	models	 consists	 of	 up	 to	 50	 iterations	 with
different	 modeling	 algorithms	 and	 hyperparameter	 settings	 to	 find	 the	 model
with	the	best	performance.	The	performance	of	each	of	these	models	is	assessed

by	 validation	with	 the	 holdout	 test	 dataset.	During	 this	 training	 step,	AutoML
creates	 several	 pipelines	 for	 training	 and	 validation	 of	 these	 iterations.	 The
process	 of	 assessing	 the	 performance	 of	 the	 models	 can	 take	 time,	 anywhere
from	several	minutes	to	a	couple	of	hours,	depending	on	the	size	of	your	dataset
and	the	dedicated	capacity	resources	available.
In	 some	 cases,	 the	 final	 model	 generated	 may	 use	 ensemble	 learning,	 where
multiple	models	are	used	to	deliver	better	predictive	performance.

4-	AutoML	Model	Explainability
After	the	model	has	been	trained,	AutoML	analyzes	the	relationship	between	the
input	features	and	 the	model	output.	 It	assesses	 the	magnitude	and	direction	of
change	 to	 the	model	 output	 for	 the	 holdout	 test	 dataset	 for	 each	 input	 feature.
This	is	known	as	the	feature	importance.

Figure	12-11:	Model	Report

5-	AutoML	Model	Report
AutoML	generates	 a	 Power	BI	 report	 that	 summarizes	 the	 performance	 of	 the
model	 during	 validation,	 along	with	 the	 global	 feature	 importance.	 The	 report
summarizes	the	results	from	applying	the	ML	model	to	the	holdout	test	data	and
comparing	the	predictions	with	the	known	outcome	values.
You	 can	 review	 the	model	 report	 to	 understand	 its	 performance.	You	 can	 also

validate	 that	 the	 key	 influencers	 of	 the	model	 align	with	 the	 business	 insights
about	the	known	outcomes.
The	charts	and	measures	used	 to	describe	 the	model	performance	 in	 the	 report
depend	on	the	model	type.	These	performance	charts	and	measures	are	described
in	the	following	sections.
Additional	pages	in	the	report	may	describe	statistical	measures	about	the	model
from	 a	 data	 science	 perspective.	 For	 instance,	 the	 Binary	 Prediction	 report
includes	a	gain	chart	and	the	ROC	curve	for	the	model.
The	reports	also	include	a	Training	Details	page	that	 includes	a	description	of
how	 the	 model	 was	 trained,	 and	 includes	 a	 chart	 describing	 the	 model
performance	over	each	of	the	iterations	runs.

Figure	12-12:	Model	Performance
Another	 section	 on	 this	 page	 describes	 how	 the	 imputation	 method	 used	 for
filling	missing	values	 for	 the	 input	 fields,	 as	well	 as	how	each	 input	 field	was
transformed	 to	 extract	 the	 features	 used	 in	 the	 model.	 It	 also	 includes	 the
parameters	used	by	the	final	model.

Figure	12-13:	Data	Featurization	and	Parameters
If	 the	model	 produced	 uses	 ensemble	 learning,	 then	 the	Training	Details	 page
also	 includes	 a	 section	 describing	 the	weight	 of	 each	 constituent	model	 in	 the
ensemble,	as	well	as	its	parameters.

Figure	12-14:	Ensemble	ML

6-	Applying	the	AutoML	Model
If	you're	satisfied	with	the	performance	of	the	ML	model	created,	you	can	apply
it	to	new	or	updated	data	when	your	dataflow	is	refreshed.	You	can	do	this	from
the	model	report,	by	selecting	the	Apply	button	in	the	top-right	corner.
To	apply	the	ML	model,	you	must	specify	the	name	of	the	entity	to	which	it	must
be	applied,	and	a	prefix	for	the	columns	that	will	be	added	to	this	entity	for	the
model	 output.	 The	 default	 prefix	 for	 the	 column	 names	 is	 the	 model	 name.
The	 Apply	 function	 may	 include	 additional	 parameters	 specific	 to	 the	 model
type.
Applying	the	ML	model	creates	a	new	dataflow	entity	with	the	suffix	enriched
<model_name>.	 For	 instance,	 if	 you	 apply	 the	 PurchaseIntent	 model	 to
the	OnlineShoppers	entity,	the	output	will	generate	the	OnlineShoppers	enriched
PurchaseIntent.
Currently,	 the	output	entity	cannot	be	used	to	preview	the	ML	model	results	 in
the	Power	Query	editor.	The	output	columns	always	show	null	as	the	result.	To
view	the	results,	a	second	output	entity	with	the	suffix	enriched	<model_name>
Preview	is	created	when	the	model	is	applied.
You	must	refresh	the	dataflow,	to	preview	the	results	in	the	Query	Editor.

Figure	12-15:	Output	Entity
When	you	apply	 the	model,	AutoML	always	keeps	your	predictions	up-to-date
when	the	dataflow	is	refreshed.
AutoML	also	includes	an	individualized	explanation	for	each	row	that	it	scores
in	the	output	entity.
To	use	the	insights	and	predictions	from	the	ML	model	in	a	Power	BI	report,	you
can	 connect	 to	 the	 output	 entity	 from	 Power	 BI	 Desktop	 using
the	dataflows	connector.

Deep	dive	into	the	3	types	of	ML	Models
1-	Binary	Prediction	Models
Binary	Prediction	models,	more	formally	known	as	binary	classification	models,
are	used	to	classify	a	dataset	into	two	groups.	They're	used	to	predict	events	that
can	 have	 a	 binary	 outcome,	 such	 as	whether	 a	 sales	 opportunity	will	 convert,
whether	an	account	will	churn,	whether	an	invoice	will	be	paid	on	time;	whether
a	transaction	is	fraudulent,	and	so	on.
Since	the	outcome	is	binary,	Power	BI	expects	the	label	for	a	binary	prediction
model	 to	 be	 a	Boolean,	with	 known	outcomes	being	 labeled	 true	 or	 false.	For
instance,	 in	a	sales	opportunity	conversion	model,	sales	opportunities	 that	have
been	won	are	 labeled	 true,	 those	 that	 have	been	 lost	 are	 labeled	 false,	 and	 the
open	sales	opportunities	are	labeled	null.
The	output	of	a	Binary	Prediction	model	is	a	probability	score,	which	identifies
the	likelihood	that	the	outcome	corresponding	to	the	label	value	being	true	will
be	achieved.
Training	a	Binary	Prediction	Model
To	 create	 a	Binary	 Prediction	model,	 the	 input	 entity	 containing	 your	 training
data	must	have	a	Boolean	field	as	the	historical	outcome	field	to	identify	the	past
known	outcomes.
Pre-requisites:

A	Boolean	field	must	be	used	as	the	historical	outcome	field
A	minimum	 of	 50	 rows	 of	 historical	 data	 is	 required	 for	 each	 class	 of
outcomes

In	general,	if	the	past	outcomes	are	identified	by	fields	of	a	different	data	type,
you	can	add	a	calculated	column	to	transform	these	into	a	Boolean	using	Power
Query.
The	process	of	creation	for	a	Binary	Prediction	model	follows	the	same	steps	as
other	 AutoML	 models,	 described	 in	 the	 section	 Configuring	 the	 ML	 model
inputs	above.
Binary	Prediction	Model	Report
The	Binary	Prediction	model	produces	as	an	output	a	probability	 that	 a	 record
will	achieve	the	outcome	defined	by	the	Boolean	label	value	as	True.	The	report
includes	a	slicer	for	 the	probability	 threshold,	which	 influences	how	the	scores
above	and	below	the	probability	threshold	are	interpreted.

The	 report	 describes	 the	 performance	 of	 the	 model	 in	 terms	 of	 True
Positives,	False	Positives,	True	Negatives	 and	False	Negatives.	 True	 Positives
and	True	Negatives	are	correctly	predicted	outcomes	for	 the	 two	classes	 in	 the
outcome	data.	False	Positives	are	outcomes	that	had	the	actual	Boolean	label	of
value	 False	 but	 were	 predicted	 as	 True.	 Conversely,	 False	 Negatives	 are
outcomes	where	the	actual	Boolean	label	value	was	True	but	were	predicted	as
False.
Measures,	 such	 as	 Precision	 and	 Recall,	 describe	 the	 effect	 of	 the	 probability
threshold	on	the	predicted	outcomes.	You	can	use	the	probability	threshold	slicer
to	select	a	threshold	that	achieves	a	balanced	compromise	between	Precision	and
Recall.

Figure	12-16:	Binary	Prediction	Report
The	 Accuracy	 Report	 page	 of	 the	 model	 report	 includes	 the	 Cumulative
Gains	chart	and	the	ROC	curve	for	the	model.	These	are	statistical	measures	of
model	performance.	The	reports	include	descriptions	of	the	charts	shown.

Figure	12-17:	Binary	Prediction	Model	Accuracy
Applying	a	Binary	Prediction	Model
To	apply	a	Binary	Prediction	model,	you	must	specify	the	entity	with	the	data	to
which	you	want	to	apply	the	predictions	from	the	ML	model.	Other	parameters
include	 the	 output	 column	 name	 prefix	 and	 the	 probability	 threshold	 for
classifying	the	predicted	outcome.

Figure	12-18:	Applying	Binary	Prediction	Model
When	a	Binary	Prediction	model	is	applied,	it	adds	three	output	columns	to	the
enriched	 output	 entity.	 These	 are
the	PredictionScore,	PredictionOutcome	and	PredictionExplanation.	The	column
names	in	the	entity	have	the	prefix	specified	when	the	model	is	applied.
The	PredictionOutcome	 column	contains	 the	predicted	outcome	 label.	Records
with	probabilities	exceeding	the	threshold	are	predicted	as	likely	to	achieve	the
outcome,	and	those	below	are	predicted	as	unlikely	to	achieve	the	outcome.
The	 PredictionExplanation	 column	 contains	 an	 explanation	 with	 the	 specific
influence	 that	 the	 input	 features	 had	 on	 the	PredictionScore.	 This	 is	 a	 JSON
formatted	collection	of	weights	of	the	input	features	for	the	prediction.

2-	Classification	Models
Classification	 models	 are	 used	 to	 classify	 a	 dataset	 into	 multiple	 groups	 or
classes.	They	are	used	 to	predict	events	 that	can	have	one	of	multiple	possible
outcomes,	 such	 as	 whether	 a	 customer	 is	 likely	 to	 have	 a	 very	 high,	 high,
medium,	or	low	Lifetime	Value;	whether	the	risk	for	default	is	High,	Moderate,
Low	 or	 Very	 Low;	 and	 so	 on.	 The	 output	 of	 a	 Classification	 model	 is	 a

probability	 score,	which	 identifies	 the	 likelihood	 that	a	 record	will	 achieve	 the
criteria	for	a	given	class.
Training	a	Classification	Model
The	 input	 entity	 containing	 your	 training	 data	 for	 a	Classification	model	must
have	a	string	or	numeric	field	as	the	historical	outcome	field,	which	identifies	the
past	known	outcomes.
Pre-requisites:

A	 minimum	 of	 50	 rows	 of	 historical	 data	 is	 required	 for	 each	 class	 of
outcomes

The	 process	 of	 creation	 for	 a	 Classification	 model	 follows	 the	 same	 steps	 as
other	 AutoML	 models,	 described	 in	 the	 section	 Configuring	 the	 ML	 model
inputs	above.
Classification	Model	Report
The	Classification	model	 report	 is	 produced	by	 applying	 the	ML	model	 to	 the
holdout	test	data	and	comparing	the	predicted	class	for	a	record	with	the	actual
known	class.
The	model	report	 includes	a	chart	 that	 includes	 the	breakdown	of	 the	correctly
and	incorrectly	classified	records	for	each	known	class.

Figure	12-19:	Classification	Model	Report

A	further	class-specific	drilldown	enables	an	analysis	of	how	the	predictions	for
a	known	class	are	distributed.	This	includes	the	other	classes	in	which	records	of
that	known	class	are	likely	to	be	misclassified.

Figure	12-20:	Classification	Model	Accuracy
The	model	 explanation	 in	 the	 report	 also	 includes	 the	 top	 predictors	 for	 each
class.
The	Classification	model	report	also	includes	a	Training	Details	page	similar	to
the	 pages	 for	 other	 model	 types,	 as	 described	 in	 the	 section	 AutoML	 model
report	earlier	in	this	article.
Applying	a	classification	model
To	apply	a	Classification	ML	model,	you	must	specify	the	entity	with	the	input
data	and	the	output	column	name	prefix.
When	 a	 Classification	 model	 is	 applied,	 it	 adds	 three	 output	 columns	 to	 the
enriched	 output	 entity.	 These	 are
the	 PredictionScore,	 PredictionClass	 and	 PredictionExplanation.	 The	 column
names	in	the	entity	have	the	prefix	specified	when	the	model	is	applied.
The	 PredictionClass	 column	 contains	 the	 most	 likely	 predicted	 class	 for	 the
record.	The	PredictionScore	column	contains	the	list	of	probability	scores	for	the
record	for	each	possible	class.

The	 PredictionExplanation	 column	 contains	 an	 explanation	 with	 the	 specific
influence	 that	 the	 input	 features	 had	 on	 the	PredictionScore.	 This	 is	 a	 JSON
formatted	collection	of	weights	of	the	input	features	for	the	prediction.

3-	Regression	Models
Regression	models	are	used	to	predict	a	value,	such	as	the	revenue	likely	to	be
realized	 from	 a	 sales	 deal,	 the	 lifetime	 value	 of	 an	 account,	 the	 amount	 of	 a
receivable	invoice	that	is	likely	to	be	paid,	the	date	on	which	an	invoice	may	be
paid,	and	so	on.	The	output	of	a	Regression	model	is	the	predicted	value.
Training	a	Regression	Model
The	input	entity	containing	the	training	data	for	a	Regression	model	must	have	a
numeric	 field	 as	 the	 historical	 outcome	 field,	which	 identifies	 the	 past	 known
outcome	values.
Pre-requisites:

A	minimum	 of	 100	 rows	 of	 historical	 data	 is	 required	 for	 a	 Regression
model

The	process	of	creation	for	a	Regression	model	follows	the	same	steps	as	other
AutoML	 models,	 described	 in	 the	 section	 Configuring	 the	 ML	 model
inputs	above.
Regression	Model	Report
Like	 the	 other	 AutoML	model	 reports,	 the	 Regression	 report	 is	 based	 on	 the
results	from	applying	the	model	to	the	holdout	test	data.
The	 model	 report	 includes	 a	 chart	 that	 compares	 the	 predicted	 values	 to	 the
actual	value.	 In	 this	chart,	 the	distance	from	the	diagonal	 indicates	 the	error	 in
the	prediction.
The	residual	error	chart	shows	the	distribution	of	the	percentage	of	average	error
for	different	values	in	the	holdout	test	dataset.	The	horizontal	axis	represents	the
mean	of	the	actual	value	for	the	group,	with	the	size	of	the	bubble	showing	the
frequency	 or	 count	 of	 values	 in	 that	 range.	 The	 vertical	 axis	 is	 the	 average
residual	error.

Figure	12-21:	Regression	Model	Performance
The	 Regression	 model	 report	 also	 includes	 a	 Training	 Details	 page	 like	 the
reports	 for	 other	 model	 types,	 as	 described	 in	 the	 section	 AutoML	 model
report	above.
Applying	a	Regression	Model
To	apply	a	Regression	ML	model,	you	must	specify	the	entity	with	the	input	data
and	the	output	column	name	prefix.

Figure	12-22:	Apply	Regression	Model
When	a	Regression	model	is	applied,	it	adds	two	output	columns	to	the	enriched
output	 entity.	 These	 are	 the	 PredictionValue,	 and	 PredictionExplanation.	 The
column	names	in	the	entity	have	the	prefix	specified	when	the	model	is	applied.
The	PredictionValue	column	contains	the	predicted	value	for	the	record	based	on
the	input	fields.	The	PredictionExplanation	column	contains	an	explanation	with
the	specific	influence	that	the	input	features	had	on	the	PredictionValue.	This	is	a
JSON	formatted	collection	of	weights	of	the	input	features.

Summary
Automated	 machine	 learning,	 also	 referred	 to	 as	 AutoML,	 is	 the	 process	 of
automating	 the	 time	 consuming,	 iterative	 tasks	 of	ML	model	 development.	 It
allows	 data	 scientists,	 analysts,	 and	 developers	 to	 build	ML	models	with	 high
scale,	efficiency,	and	productivity	all	while	sustaining	model	quality.
Traditional	ML	model	 development	 is	 resource-intensive,	 requiring	 significant
domain	knowledge	and	time	to	produce	and	compare	dozens	of	models.	AutoML
in	Power	BI	empowers	Citizen	Data	Scientists	to	accelerate	the	time	it	takes	to
get	production-ready	ML	models	with	great	ease	and	efficiency.
AutoML	is	available	for	dataflows	in	workspaces	hosted	on	Power	BI	Premium
and	Embedded	capacities	only.	If	you	don’t	have	those	options,	you	still	can	do
Machine	 Learning	 with	 Power	 BI	 using	 Python/R,	 Integration	 with	 Azure
Machine	Learning	Studio	or	Integration	with	Azure	Machine	Learning	Services.

About	the	Author

	
Ashraf	Ghonaim,	Strategic	Management	Consultant	at	the	City	of	Toronto.		He
holds	 a	 Computer	 Engineering	 degree	 and	 an	 MBA	 degree	 in	 Strategic
Management	with	 special	 emphasis	 on	 IT-Business	 Strategic	Alignment	 using
Balanced	 Scorecard.	 He	 is	 also	 a	 certified	 Balanced	 Scorecard	 Professional™
from	the	co-creators	Drs.	Kaplan	and	Norton,	a	Lean	Six	Sigma	Black	Belt	and	a
Project	 Management	 Professional	 (PMP).	 Ashraf’s	 areas	 of	 expertise	 are;
Strategy	 Management,	 Performance	 Measurement,	 Process	 Improvement,
Analytics	and	Visualization.

Ashraf	is	the	leader	of	the	Power	Platform	user	group	community	in	Toronto	that
has	more	than	1,400	active	members.	He	is	also	the	organizer	of	and	speaker	at
the	Power	Platform	World	Tour	events	in	Toronto	and	Montreal	and	also	a
frequent	speaker	at	other	Microsoft’s	events	like	Global	AI	Bootcamp,	Azure
Bootcamp,	D365,	SQL	Saturdays,	Sharepoint	Saturdays,	etc.

Ashraf	also	volunteers	in	several	Open	Data	and	Data	for	Public	Good
initiatives.	Ashraf	is	very	active	in	participating	in	datathons	and	hackathons	as	a
mentor	and	a	judge.	He	recently	got	his	Microsoft	MVP	award	in	recognition	of
his	contribution	to	the	data	and	analytics	community.	Ashraf	is	an	MVP	in	Data
Platform	(Power	BI)	with	special	focus	on	leveraging	Machine	Learning,	AI
Cognitive	Services	and	Advanced	Analytics	Capabilities	in	Power	BI	to	deliver
impactful	results.

	
	

https://mvp.microsoft.com/en-us/PublicProfile/5003151

Part	V:	Integration	of	Other	Applications
with	Power	BI

Chapter	13:	Power	BI	REST	API
Author:	Eduardo	Castro
Power	BI	service	components	can	be	configured	and	administered	using	its	user
interface	on	the	web	available	at	http://app.powerbi.com,	however	sometimes
automation	is	needed	in	order	to	perform	repetitive	tasks	or	integration.
In	this	chapter	we	will	explore	how	to	use	the	Power	BI	REST	API	to	administer
and	integrate	Power	BI	with	other	applications.	We	will	use	C#	to	manage
workspaces,	permissions	and	other	administration	related	task	using	Power	BI
REST	API.

http://app.powerbi.com

Getting	ready	to	use	Power	BI	REST	API
The	Power	BI	REST	API	is	available	to	developers	to	take	advantage	of	when
you	need	to	perform	repetitive	administration,	including	configuring	and
integrating	Power	BI	with	external	applications.	However,	before	you	can	use
the	REST	API	you	need	to	have	the	proper	permissions	and	configuration.
The	first	step	is	to	register	your	application.	This	is	a	requirement	because	any
application	that	wants	to	interact	with	the	Power	BI	Service	and	with	Azure	must
be	registered	and	authorized	in	the	Power	BI	and	Azure	tenants.

Register	your	developer	application
To	start	the	registration	process,	navigate	to	https://dev.powerbi.com/apps.In	this
first	step	you	must	first	login	using	your	corporate	Power	BI	account	and	must
follow	the	instructions	to	register	and	authorize	your	application.

Figure	13-01:	Beginning	the	Power	BI	Application	Registration
Click	on	the	“Sign	In”	button	and	login	with	your	credentials.

https://dev.powerbi.com/apps

Figure	13-02:	Logging	with	your	credentials
After	logging	in	you	can	continue	with	your	app	registration.

Figure	13-03:	Begin	App	registration
The	App	Registration	page	requires	the	following	information:	your	application
name	and	the	application	type.	For	the	application	type	you	have	two	options:
●								Server-side	Web	App:	This	use	case	is	for	applications	that	resides	on	a

server.	In	this	case	it	can	be	web	applications	or	mobile	applications.
●								Native	App:	This	use	case	is	for	applications	that	will	run	on	a	specific

environment,	for	example	a	console	application.
During	the	App	Registration	you	must	provide	your	application	name	and
application	URL	and	redirect	URL.
	

Figure	13-04:	Basic	app	information
The	application	type	is	related	with	the	integration	of	Power	BI	with	your
applications,	this	is	because	there	are	two	ways	to	integrate	Power	BI	into	your
application:
●								Integration	with	a	token:	In	this	case	your	application	is	the	one	that

authenticates	with	the	Power	BI	Service,	all	the	authentication	process	is
done	by	the	application,	and	end	users	do	not	even	need	a	Power	BI
Account.

●								Integration	without	a	token:	In	this	case,	when	the	users	want	to	access
your	application	content,	they	will	be	prompted	for	a	Power	BI	Account
for	authentication.

If	your	application	is	going	to	use	integration	with	a	token	you	must	create	the
application	as	Native	Application	Type,	it	doesn’t	matter	is	the	application	you
are	creating	is	web-based,	console	or	a	mobile	application.
The	next	step	is	to	choose	the	proper	permissions	you	want	for	your	application,
you	must	choose	only	the	required	permissions	based	on	the	operations	you	plan
to	use	with	the	Power	BI	API.	Your	application	can	have	access	only	to	the
“Read	Only	APIs”	this	is	useful	when	your	are	creating	an	application	that	is
going	to	use	to	generate	reports	about	your	Power	BI	Objects,	but	if	your
application	needs	to	modify	the	content	then	you	will	need	to	give	your
application	“Read	and	write	APIs”	permissions.

Figure	13-05:	Choosing	the	API	access	permissions
The	last	step	is	the	register	your	application,	once	you	have	selected	all	the
properties	and	permissions	of	your	applications,	you	click	the	“Register”	button
and	if	everything	is	ok,	you	will	receive	a	Client	Secret	and	Client	ID,	copy	&
paste	this	information	and	save	it,	because	you	will	need	it	in	your	code	in	order
to	interact	with	Power	BI	Service.

Figure	13-06:	Power	BI	Application	successfully	registered

Register	your	application	in	Azure	Portal

Another	method	to	register	your	application	is	using	the	Azure	Portal,	to	use	this
method	you	must	go	to	http://portal.azure.com	using	this	method	gives	your
more	control	on	your	application	and	if	you	want	you	can	always	go	to	the
Azure	Portal	and	change	the	permissions	of	your	application.
The	first	step	is	to	login	in	http://portal.azure.com,	once	you	are	authenticated	in
the	Portal	you	must	select	the	Azure	Active	Directory	Configuration,	as	shown
below.

Figure	13-07:	Power	BI	Application	registration	using	the	Azure	Portal
The	next	step	is	to	choose	the	App	Registration	Option.

Figure	13-08:	Application	registration	using	the	Azure	Portal

http://portal.azure.com
http://portal.azure.com

In	the	App	registrations	page,	you	will	see	all	your	previously	created
applications	and	you	can	create	new	ones.	In	our	case,	we	will	create	a	new
application	registration.

Figure	13-09:	New	application	registration	using	the	Azure	Portal
Once	you	click	New	Registration,	you	must	assign	a	name	to	your	application
and	must	choose	one	of	the	supported	account	types	related	to	who	can	use	this
application	or	access	this	API.
●								Accounts	in	this	organizational	directory	only	(Linchpin	People).	This

option	is	the	default	if	you	are	creating	a	line-of-business	(LOB)
application.	This	option	maps	your	application	to	a	single-tenant	Azure
AD.

●								Accounts	in	any	organizational	directory
●								Accounts	in	any	organizational	directory	and	personal	Microsoft	accounts

(e.g.	Skype,	Xbox,	Outlook.com)
If	you	want	to	restrict	the	use	of	the	Application	to	only	your	internal	users	you
must	choose	the	first	option.	Once	created	you	must	assign	the	proper
permissions	to	your	application,	to	do	so,	click	on	API	Permissions.

Figure	13-10:	New	application	API	Permissions
In	the	Request	API	permissions	page,	you	must	select	Power	BI	Service	to	get
the	permission	configuration	related	to	Power	BI.

Figure	13-11:	Power	BI	Service	selection	in	permissions	page
In	the	permission	page	you	can	assign	or	delegate	your	application	one	or	more
permission	depending	on	the	operations	and	interaction	that	your	application	will
be	doing	using	the	REST	API,	in	our	case	we	will	select	all	the	permissions,	as
shown	below.

Figure	13-12:	Power	BI	Service	selection	in	permissions	delegation
In	the	Delegated	permissions	page,	you	must	select	the	permissions	for	your
application	and	the	click	on	Add	permissions.

Figure	13-12:	Power	BI	Service	adding	permissions
After	you	have	added	permissions	a	warning	message	is	shown	indicating	that	a
tenant	administrator	must	grant	consent	the	permissions	for	your	application.

Figure	13-13:	Power	BI	Service	warns	that	administrator	consent	is
required
If	your	are	a	tenant	administrator	you	can	grant	consent	yourself	if	not	you	will
have	to	ask	your	tenant	administrator	to	grant	permissions	consent	to	your
application,	as	show	below.

Figure	13-14:	Administrator	consent	for	the	required	permissions
After	the	permissions	are	granted	the	page	will	all	the	permissions	that	the
application	can	use.

Figure	13-15:	Administrator	has	granted	consent	for	the	required
permissions
Before	you	can	use	the	Power	BI	Rest	API	you	must	get	the	application	secret.
To	do	it	click	on	“Certificates	&	secrets”

Figure	13-16:	The	application	secret	must	be	created	before	using	the	REST
API
The	next	step	is	to	create	the	Client	Secret	to	be	used	in	our	code,	select
“Certificates	&	secrets”	and	then	“New	client	secret”.

Figure	13-17:	Creating	of	the	client	secret	to	be	used	with	the	REST	API
In	the	client	secret	creation	page,	you	must	select	the	duration	of	the	client
secret,	it	can	be	1	year,	2	years	or	without	expiration.

Figure	13-18:	Client	secret	expiration	configuration
After	the	client	secret	is	created,	it	will	be	displayed	next	to	the	description	field,
be	sure	to	write	down	the	client	secret	because	it	will	not	be	show	after	you
navigate	off	this	web	page.

	

Figure	13-19:	Client	secret	was	created	successfully
The	final	step	is	to	configure	our	application	to	not	use	redirect	URI,	to	do	it	go
to	Authentication	section	in	the	application	configuration.

Figure	13-20:	Configure	your	application	to	not	use	redirect	URI
Now	you	are	ready	to	start	creating	your	C#	application	and	to	use	the	Power	BI
API.

Preparing	Visual	Studio	to	use	the	Power	BI	REST	API
In	this	chapter	we	will	use	the	sample	code	developed	by	Microsoft	and	that	is
available	in	GitHub	at	https://github.com/Microsoft/PowerBI-Developer-
Samples/tree/master/App%20Owns%20Data,	the	code	provided	by	Microsoft	is
free	to	use,	and	it	will	be	base	for	our	sample	here.
Start	by	downloading	or	cloning	the	GitHub	repository	to	your	local	machine,	in
our	case	we	will	download	it.
	

Figure	13-21:	Download	the	sample	code	to	your	computer
Open	the	PowerBIEmbedded_AppOwnsData	solution,	this	will	the	base	code	we
will	be	using.
	

Figure	13-22:	Sample	code	for	using	Power	BI	REST	API
Before	your	application	can	use	the	Power	BI	REST	API	you	must	provide	the
proper	configuration	in	the	web.config	file,	the	data	you	must	fill	are:	 applicationId,
workspaceId,	pbiUsername,	pbiPassword,	applicationSecret	 and 	tenant

	

https://github.com/Microsoft/PowerBI-Developer-Samples/tree/master/App%20Owns%20Data

Figure	13-23:	Web.config	configuration	to	use	Power	BI	REST	API
To	get	these	values	please	get	back	to	the	Azure	Portal	and	click	on	the
application	we	had	just	created,	the	information	we	need	will	be	displayed.

Figure	13-24:	Information	needed	to	be	included	in	the	web.config	of	your
application
The	following	code	invokes	the	Authentication	Method	and	as	result	you	will	get
valid	token	credentials	that	will	be	used	in	the	following	methods	to	invoke	the
REST	API.

//	Get	token	credentials	for	user
var	getCredentialsResult	=	await	GetTokenCredentials();
if	(!getCredentialsResult)
{
				//	The	error	message	set	in	GetTokenCredentials
				return	false;

}

To	begin	using	the	REST	API	we	use	the	PowerBIClient	class,	this	object	has
the	methods	to	call	the	Power	BI	REST	API.	The	following	code	uses	the
PowerBIClient	class	and	list	the	reports	in	the	workspace.

//	Create	a	Power	BI	Client	object.	It	will	be	used	to	call	Power	BI	APIs.
using	(var	client	=	new	PowerBIClient(new	Uri(ApiUrl),	m_tokenCredentials))
{
						//	Get	a	list	of	reports.
						var	reports	=	await	client.Reports.GetReportsInGroupAsync(WorkspaceId);
	
					//	No	reports	retrieved	for	the	given	workspace.
					if	(reports.Value.Count()	==	0)
					{
								m_embedConfig.ErrorMessage	=	"No	reports	were	found	in	the	workspace";
								return	false;
					}
	
					Report	report;
					if	(string.IsNullOrWhiteSpace(ReportId))
					{
								//	Get	the	first	report	in	the	workspace.
								report	=	reports.Value.FirstOrDefault();
					}
}

	
	
We	can	continue	using	the	REST	API	depending	on	our	needs,	for	example	the
following	code	lists	the	datasets	inside	a	specific	workspace	and	gets
information	about	roles.
	
	
	
var	datasets	=	await	client.Datasets.GetDatasetByIdInGroupAsync(WorkspaceId,	report.DatasetId);
m_embedConfig.IsEffectiveIdentityRequired	=	datasets.IsEffectiveIdentityRequired;
m_embedConfig.IsEffectiveIdentityRolesRequired	=	datasets.IsEffectiveIdentityRolesRequired;
	
	
The	following	code	uses	the	Power	BI	REST	API	to	get	the	list	of	dashboards.

//	Create	a	Power	BI	Client	object.	It	will	be	used	to	call	Power	BI	APIs.
using	(var	client	=	new	PowerBIClient(new	Uri(ApiUrl),	m_tokenCredentials))
{
					//	Get	a	list	of	dashboards.
					var	dashboards	=	await					
					client.Dashboards.GetDashboardsInGroupAsync(WorkspaceId);
	
					//	Get	the	first	report	in	the	workspace.

					var	dashboard	=	dashboards.Value.FirstOrDefault();
	
					if	(dashboard	==	null)
					{
								m_embedConfig.ErrorMessage	=	"Workspace	has	no	dashboards.";
								return	false;
					}

}

Depending	on	your	needs	you	can	continue	using	the	REST	API	using	the
methods	implemented	in	the	PowerBIClient	class.

Summary
Power	BI	Service	gives	you	the	user	interface	to	administrative	tasks	but	you	can
use	the	REST	API	in	order	to	integration	Power	BI	with	your	applications.	In
this	chapter	we	gave	you	he	steps	on	how	to	do	configuration	to	be	able	to	used
the	Power	BI	REST	API	and	also,	we	gave	some	starting	examples	on	how	to
use	it	inside	C#.

About	the	Author

Eduardo	Castro	is	an	Enterprise	Chief	Architect,	Microsoft	Regional	Director
and	Microsoft	Data	Platform	MVP,	living	in	San	José	Province,	Costa	Rica.
With	more	than	20	years	of	experience	in	IT	projects	in	public	sector	and	large
companies,	Eduardo	has	helped	the	companies	to	achieve	their	best	using
technology	based	on	Windows	or	Linux.	A	fan	of	new	technology,
entrepreneurship,	and	travel,	he	enjoys	drinking	good	cup	of	coffee.	Eduardo	is	a
regular	speaker	in	several	Microsoft	Conferences	and	Community	Events	in
USA	and	Latin	America.

Chapter	14:	Real-Time	Streaming	Datasets
	
Author:	Manohar	Punna
Power	BI	helps	you	build	appealing	visualizations	of	your	data.	With	an	ever-
growing	footprint	of	data,	it	is	essential	to	get	real-time	insights	into	your	data.
These	insights	can	be	as	simple	as	monitoring	a	single	metric	or	as	complex	as
viewing	real-time	sales	performance	across	multiple	locations.	Power	BI	real-
time	streaming	datasets	enable	you	to	stream	data	and	update	dashboards	in	real-
time.	Any	time-sensitive	data	can	be	a	source	of	streaming	datasets	such	as	IoT
sensor	devices,	social	media	sources,	and	service	usage	metrics.
In	this	chapter,	I	will	introduce	different	types	of	streaming	datasets	and	step-by-
step	implementation	of	these	datasets	using	various	examples.	By	the	end	of	this
chapter,	you	will	be	able	to	create	streaming	datasets,	push	data	into	them,	and
visualize	data	from	them	in	Power	BI.
	

Introduction
Real-time	analytics	has	become	the	norm	for	most	businesses.	The	application	of
real-time	streaming	is	useful	in	monitoring	sensor	data,	social	media	trends,	and
metrics	from	any	time-sensitive	analysis	on	data	captured	in	real-time.
With	this	requirement,	there	is	a	need	to	address	the	complexity	of	implementing
real-time	streaming	solutions.	Microsoft	Power	BI	provides	real-time	streaming
datasets	as	a	solution	to	this	requirement.	Streaming	datasets	can	be	created	to
collect	the	transmitted	data	and	analyze	them	using	real-time	streaming	visuals.
These	visuals	can	be	real-time	on	dashboards	and	can	also	be	used	in	building
reports.
The	definition	of	“real-time”	varies	among	industries	and	businesses.	For
example,	in	a	manufacturing	factory,	detecting	an	anomaly	in	the	product
manufactured	should	be	done	before	the	product	is	packaged	and	sent.	Whereas
in	the	same	factory,	monitoring	pressure	levels	are	critical	and	need	to	be	fixed
within	a	few	minutes.	As	an	architect	designing	a	real-time	solution,	it	is	crucial
to	identify	and	record	these	requirements	and	service	level	agreements	to	design
a	suitable	real-time	solution.

Real-Time	Datasets
In	Power	BI,	there	are	three	types	of	real-time	datasets:
●								Push	dataset
●								Streaming	dataset
●								PubNub	streaming	dataset

These	datasets	are	designed	to	display	real-time	streaming	data	on	dashboards.
First,	let	us	see	how	these	datasets	work.	Later	we	can	look	at	pushing	data	into
these	datasets	and	building	visuals	from	these	datasets.
	

Push	Datasets
Push	dataset,	as	the	name	suggests,	allows	to	push	data	into	the	Power	BI
service.	When	you	create	this	dataset,	Power	BI	provisions	a	database	to	host	the
data	pushed	into	this	dataset.	This	database	is	only	accessible	as	a	dataset	in
Power	BI.	There	is	no	way	to	connect	to	this	database	directly.
The	data	stored	in	the	dataset	can	be	used	to	build	visuals	in	reports.	These
visuals	can	then	be	pinned	to	dashboards	to	display	real-time	data.
Note:	Visuals	created	using	real-time	streaming	datasets	refresh	in	real-time	on
dashboards	only.	The	Power	BI	service	triggers	the	refresh	of	a	dashboard	tile
when	the	data	refreshes	on	the	real-time	dataset.
Once	you	pin	a	visual	created	on	a	push	dataset	to	a	dashboard,	you	can	also
perform	Q&A	in	natural	language	on	the	dataset.	You	can	pin	the	resulting	visual
as	a	live	tile	on	the	dashboard.
It	is	important	to	note	that	when	you	pin	the	live	page	that	hosts	the	visuals
created	on	real-time	datasets	to	a	dashboard,	the	data	does	not	refresh	in	real-
time	on	the	live	page.
Advantages	and	Disadvantages

The	main	advantage	of	push	datasets	is	to	build	visuals	in	reports	similar
to	standard	datasets.	The	data	is	saved	forever	in	the	provisioned	database.
Hence,	the	reports	can	be	built	to	analyze	historical	data	for	in-depth
analysis	in	addition	to	real-time	analysis.
The	disadvantage	of	having	to	push	data	into	a	database	is	that	the	data
refresh	is	not	instantaneous.	You	can	expect	to	see	a	latency	of	3-5
seconds	for	the	data	to	appear	on	the	visual	on	the	dashboard	from	the
time	data	is	pushed	from	the	source.

Data	ingestion	is	at	the	rate	of	1	request	per	second	with	up	to	16	MB	per
request.	The	throughput	is	limited	to	1	million	rows	of	data	per	hour.	If
your	data	is	more	extensive	than	these	limits,	it	is	recommended	to	push
aggregated	data	from	the	source.

Streaming	Datasets
A	streaming	dataset	is	the	pure	flavor	of	a	real-time	dataset.	The	latency	is
minimal	and	is	built	only	for	real-time	analysis.	The	dataset	is	provisioned	in
Power	BI	using	a	temporary	cache.	This	mechanism	helps	reduce	the	latency	and
provides	near	real-time	data	access	in	Power	BI.	As	this	is	a	temporary	cache,
the	data	is	hosted	up	to	one	hour,	hence	providing	a	transient	real-time	trend	for
visuals	like	a	line	chart.
The	visuals	can	be	created	only	on	a	dashboard	using	the	Add	Tile	functionality.
You	cannot	create	a	visual	using	this	dataset	in	reports.	All	the	report-specific
functions	like	filtering	and	custom	visuals	are	not	available	when	using	the
streaming	dataset.
Streaming	datasets	are	available	under	the	custom	streaming	data	option	as	a
data	source	and	is	visible	when	you	create	a	live	tile	on	the	dashboard.
Advantages	and	Disadvantages

The	advantage	of	using	streaming	dataset	is	that	it	provides	very	little
latency.	There	is	no	database	to	host	the	data,	which	reduces	the	latency	of
writing	and	reading	from	a	database.
The	disadvantages	are	that	there	is	no	access	to	historical	data,	and	there
are	limited	visuals	that	you	can	create	on	a	dashboard	using	live	tiles.	The
data	is	saved	temporarily	for	up	to	one	hour.
Data	ingestion	is	at	the	rate	of	5	requests	per	second	with	up	to	15	KB	per
request.	There	is	no	throughput	limit	for	streaming	dataset,	while	the	size
of	the	request	is	less	than	that	of	push	dataset.	This	limit	is	set	because	it
targets	scenarios	where	you	would	want	to	use	streaming	datasets	to	view
data	which	is	meaningful	for	real-time	analysis	as-is,	like	temperature
readings	or	other	sensor	data	to	detect	any	spikes.

PubNub	Datasets
PubNub	is	a	streaming	service	provided	by	PubNub	Inc.	These	datasets	are
useful	if	you	are	already	using	PubNub	for	your	real-time	solutions	and	would
like	to	integrate	it	into	your	reporting	in	the	Power	BI	service.	The	Power	BI
service	uses	the	PubNub	SDK	to	connect	to	the	PubNub	data	stream.	PubNub

hosts	the	data	and	pushes	to	Power	BI	through	the	PubNub	data	stream.
PubNub	datasets	are	streaming	datasets	where	the	data	does	not	reside	on	Power
BI.	So,	you	cannot	build	reports	using	this	dataset.	The	only	available	option	to
use	this	dataset	is	to	use	live	tiles	in	the	dashboard.
The	refresh	of	live	tiles	is	almost	instantaneous	as	the	service	connects	directly
to	the	data	stream.	As	the	data	is	not	hosted	on	Power	BI	service,	there	are	no
limits	defined	on	these	datasets.	The	limits	are	defined	in	PubNub	service.

Creating	Real-Time	Datasets
Real-time	datasets	can	be	created	on	the	Power	BI	service	using	the	following
methods:
●								Power	BI	Service	UI
●								Power	BI	REST	API
●								Azure	Stream	Analytics
●								PubNub

Power	BI	Service	UI
Real-time	datasets	can	be	created	using	the	UI	on	the	Power	BI	Service.	You
need	to	follow	the	below	steps	to	create	a	new	real-time	dataset:

1.	 Click	on	any	workspace	in	the	Power	BI	portal.
2.	 Click	on	Create	and	select	Streaming	dataset.

Figure	14-01:	Create	–	Streaming	dataset
3.	 Select	API	to	create	a	Push	or	Streaming	dataset	using	UI	in	Power	BI

service.

Figure	14-02:	New	streaming	dataset	–	Choose	API
4.	 In	the	New	streaming	dataset	screen,	provide	the	Dataset	name.	Under

Values	from	stream,	provide	the	columns	in	the	dataset	with	an
appropriate	data	type.

Figure	14-03:	New	streaming	dataset

A	sample	JSON	string	shows	up	as	you	type	in	the	columns	and	the	data	type.	This
JSON	string	is	the	format	for	the	data	that	you	pass	as	payload	to	push	data

to	the	dataset.

The	option	Historic	data	analysis	selection	decides	if	the	dataset	is	push	or
streaming.	If	this	option	is	selected,	the	data	is	saved	forever	in	a	database,
making	it	a	push	dataset.	If	you	do	not	opt	to	select	this	option	the	dataset
is	saved	temporarily	in	a	cache,	making	it	a	streaming	dataset.

Click	Create	button	to	create	the	new	streaming	dataset.

5.	 On	the	Streaming	dataset	created	screen,	the	URL	to	use	for	pushing	the
data	into	the	dataset	is	provided.	Also,	sample	scripts	are	provided	in
cURL	and	PowerShell	syntaxes	to	push	data	to	this	dataset.

Figure	14-04:	Streaming	dataset	created
Once	the	dataset	is	created,	we	can	start	creating	visuals	in	dashboards	(and
reports	in	case	of	push	dataset).

Power	BI	REST	API
The	Power	BI	REST	API	provides	the	functionality	to	create	datasets	and	post
data	to	the	datasets.	The	dataset	can	be	created	by	using	PostDataset	API	using
the	following	URLs	for	the	POST	request.	The	body	passed	with	the	POST
request	contains	the	structure	of	the	dataset	that	is	created.
My	Workspace:	https://api.powerbi.com/v1.0/myorg/datasets
App	Workspace:	https://api.powerbi.com/v1.0/myorg/groups/{groupid}/datasets
Request	Body:

	
{
"name":	"Streaming_MVPDD",
"defaultMode":	"PushStreaming"
"tables":	[

{
"name":

"RESTStreaming_MVPDD",
"columns":	[

{

	"name":	"state",
	"dataType":	"string"
},

								{
	"name":	"value",
	"dataType":	"Int64"
}

]
}

]
}
	

	

Azure	Stream	Analytics
In	the	first	two	methods	of	creating	a	streaming	dataset,	you	need	to	create	the
dataset	knowing	the	structure	of	the	dataset.	When	pushing	data	from	Azure
stream	analytics	job,	the	dataset	is	created	based	on	the	data	passed	from	the
query	output.	If	a	dataset	exists	in	Power	BI	with	the	same	name,	the	dataset	is
recreated,	and	any	structure	that	exists	in	Power	BI	is	overwritten	with	the	new
structure	from	stream	analytics	job.
To	create	a	streaming	dataset	using	Azure	Stream	Analytics,	you	need	to	follow
the	steps	below.

1.	 Setup	an	Event	Hub	to	which	you	can	push	data	using	the	steps	provided
here

2.	 Create	an	Event	hub	–	https://docs.microsoft.com/en-us/azure/event-
hubs/event-hubs-create

3.	 Send	and	receive	events	-	https://docs.microsoft.com/en-us/azure/event-
hubs/event-hubs-dotnet-standard-getstarted-send

4.	 Setup	a	Stream	Analytics	job	with	Event	Hub	as	the	source	and	Power	BI
as	a	target	for	the	query.

Figure	14-05:	Stream	analytics	job	–	Query

5.	 Start	the	Stream	Analytics	job	and	start	pushing	the	data	into	the	event
hub.

6.	 The	Power	BI	service	creates	the	new	dataset	when	the	first	set	of	data
arrives	into	the	Power	BI	service.

Figure	14-06:	Edit	streaming	dataset

PubNub
You	can	create	Power	BI	streaming	datasets	that	connects	to	a	PubNub	data
stream	by	selecting	PUBNUB	when	creating	a	new	streaming	dataset.

Figure	14-07:	New	streaming	dataset	–	Choose	PUBNUB
To	connect	to	a	PubNub	data	stream,	you	need	to	provide	the	Sub-key	and
Channel	name	from	PubNub	data	stream.

Figure	14-08:	New	streaming	dataset	–	PubNub	dataset
A	sample	data	stream	is	available	to	test	the	PubNub	data	stream.

Sub-key	-	 sub-c-5f1b7c8e-fbee-11e3-aa40-
02ee2ddab7fe
Channel	-	pubnub-sensor-network

	

Push	Data	to	Streaming	Datasets
Once	the	push	or	streaming	dataset	is	created	using	one	of	the	above	methods,
data	can	be	pushed	using	HTTP	post	requests	using	Power	BI	REST	API	calls.
For	the	scope	of	this	chapter,	let	us	detail	the	steps	to	push	data	using	PowerShell
scripts	with	an	example.
The	sample	script	provided	when	creating	a	dataset	using	Power	BI	service	UI
can	be	used	as	a	reference	to	write	the	post	requests.	The	sample	scripts	are
accessible	after	creating	the	streaming	dataset	by	clicking	the	�	icon	on	the
dataset.

Figure	14-09:	Dataset	properties
$endpoint	=	"https://api.powerbi.com/beta/00029a0b-28a4-4b60-aed5-b8b504506e77/datasets/f77002df-d3a6-4f28-bb35-
ec9b2241ab18/rows?
key=Ljvs8eMHX%2F1WvGp4Hq2ejKoCfe4uXqmadPJjIewHdThq0rI1Ch%2B5m7L1AXEj3YdSHdONFBbnva90IJ0T1sj6uw%3D%3D"
$payload	=	@{

						"state"	="AAAAA555555"
						"value"	=98.6
}
Invoke-RestMethod	-Method	Post	-Uri	"$endpoint"	-Body	(ConvertTo-Json	@($payload))

	
For	simulating	a	real-time	workload,	I	have	a	database	where	I	insert	the	data	in
a	loop.	I	also	have	a	procedure	which	reads	the	data	from	the	table	and	marks	the
data	as	“read”	once	it	has	been	read.	The	SQL	script	for	the	schema	is	as	follows.

--Tables
CREATE	TABLE	[dbo].[StreamTest](

[id]	[int]	IDENTITY(1,1)	NOT	NULL,
[EventTime]	[datetime]	NULL,
[StateName]	[nvarchar](30)	NULL,
[Value]	[int]	NULL,
[ReadStatus]	[bit]	NULL

)	ON	[PRIMARY]
GO
	
CREATE	TABLE	[dbo].[States](

[id]	[int]	IDENTITY(1,1)	NOT	NULL,
[StateName]	[nvarchar](3)	NULL

)	ON	[PRIMARY]

	
INSERT	INTO	dbo.States
VALUES
('NSW'),('VIC'),('QLD'),('SA'),('TAS'),('WA'),('ACT'),('NT')
	
	
--	Proc	to	insert	data	into	StreamTest	table
CREATE	PROCEDURE	[dbo].[StreamInsert_prc]

(@value	INT	=	NULL
,@StateName	NVARCHAR(3)	=	NULL)

AS
BEGIN

--DECLARE	@value	INT	=	NULL,	@StateName	NVARCHAR(3)	=	NULL
IF	OBJECT_ID('StreamTest')	IS	NULL
CREATE	TABLE	StreamTest

(id	INT	IDENTITY
,EventTime	DATETIME
,StateName	NVARCHAR(30)
,Value	INT
,ReadStatus	BIT	DEFAULT	0)

	
INSERT	INTO	StreamTest	(EventTime,	Value,	StateName)
SELECT	--GETDATE()
CAST((GETDATE()	AT	TIME	ZONE	'UTC')	AT	TIME	ZONE	'AUS	Eastern
Standard	Time'	AS	DATETIME)
,	ISNULL(@value,CAST(RAND()*100	AS	INT))
,	ISNULL(@StateName,	(SELECT	StateName	FROM	States	WHERE	id	=
CAST(RAND()*100	AS	INT)%8+1))

END
GO

	
	

--	Proc	to	read	data	for	push	dataset
	
CREATE	PROCEDURE	[dbo].[StreamRead_prc]
AS
BEGIN

DECLARE	@id	INT
	
SELECT	@id	=	MAX(id)
FROM	StreamTest
WHERE	ReadStatus	=	0
	
SELECT	EventTime,	Value,	StateName	AS	State
FROM	StreamTest
WHERE	id	<=	@id	AND	ReadStatus	=	0

ORDER	BY	EventTime
FOR	JSON	AUTO
	
UPDATE	StreamTest
SET	ReadStatus	=	1
WHERE	id	<=	@id
	

END
GO

Run	the	following	script	to	insert	data	in	a	loop.
WHILE	(1=1)
BEGIN

EXEC	StreamInsert_prc
WAITFOR	DELAY

'00:00:01'
END

	
To	push	the	data	in	increments,	modify	the	sample	PowerShell	script	to	run	in	a
loop.	This	script	picks	the	incremental	data	from	the	database	and	pushes	it	to
the	streaming	dataset	in	Power	BI.	This	method	is	the	same	for	both	push	and
streaming	datasets.
You	can	start	creating	visuals	in	Power	BI,	once	this	data	appears	on	the	dataset.

#Copy	endpoint	for	push	dataset
$endpoint	=	"https://api.powerbi.com/beta/00029a0b-28a4-4b60-aed5-b8b504506e77/datasets/f77002df-d3a6-4f28-bb35-
ec9b2241ab18/rows?
key=Ljvs8eMHX%2F1WvGp4Hq2ejKoCfe4uXqmadPJjIewHdThq0rI1Ch%2B5m7L1AXEj3YdSHdONFBbnva90IJ0T1sj6uw%3D%3D"
	
#Run	in	a	loop	for	100	iterations
For	($i=0;	$i	-le	100;	$i++)
{
				$conn	=	New-Object	System.Data.SqlClient.SQLConnection
				$conn.ConnectionString	=	"Data	Source=<database	server>;Initial	Catalog=<database>;user=<username>;password=<password>"
	
				#connect	to	the	database	to	run	the	read	proc
				$conn.Open()
				$table	=	new-object	"System.Data.DataTable"
				$tableAgg	=	new-object	"System.Data.DataTable"
	
				$cmd	=	$conn.CreateCommand()
				$cmd.CommandText	=	"EXEC	StreamRead_prc"
				$result	=	$cmd.ExecuteReader()
	
				#Push	the	json	result	form	proc	to	streaming	dataset
				if	($result.HasRows	-eq	"true")

				{					
								$table.Load($result)
	
								$payload	=	$table[0].Rows[0][0]
								$payload.substring(1,$payload.Length-2)
	
								Invoke-RestMethod	-Method	Post	-Uri	"$endpoint"	-Body	$payload								
				}
				$result.Close()
	
				start-sleep	-s	3
				echo	"iteration	$i	completed"
				$conn.Close()
}

	
The	above	PowerShell	code	or	code	using	other	supported	languages	can	be
integrated	into	your	existing	application	to	push	data	into	streaming	datasets	in
Power	BI.
In	case	of	using	an	Azure	Stream	Analytics	job	or	using	PubNub	as	the	data
source,	there	are	no	additional	steps	required	to	push	data	into	streaming
datasets.	The	Stream	Analytics	job	pushes	data	to	the	streaming	datasets.	The
PubNub	SDK	that	connects	to	the	PubNub	data	stream	triggers	data	refresh	on
live	tiles	as	the	data	refreshes	in	the	PubNub	data	stream.

Visualizing	Real-Time	Datasets
There	are	two	ways	you	can	visualize	streaming	data	on	a	Power	BI	dashboard:
●								The	first	method	is	using	streaming	datasets	that	are	created	using	the	UI,

Azure	Stream	Analytics,	or	PubNub	directly	on	the	dashboard	to	create	a
tile.

●								The	second	method	is	to	create	reports	using	the	push	dataset	and	pin	the
visuals	to	the	dashboard.

Streaming	datasets
1.	 On	a	dashboard	where	you	want	to	visualize	streaming	data,	click	on	+

Add	Tile.
Figure	14-10:	Dashboard	–	Add	tile

2.	 On	Select	source	screen,	under	REAL_TIME	DATA,	select	Custom
Streaming	Data	and	click	Next.

Figure	14-11:	Dashboard	–	Add	tile	–	Select	source

3.	 On	the	Choose	a	streaming	dataset	screen,	under	YOUR	DATASETS,
select	any	push	or	streaming	dataset	that	exists.	In	this	example,	let	us
choose	the	sample	PubNub	dataset.

Figure	14-12:	Dashboard	–	Add	tile	–	Choose	streaming	dataset

4.	 On	the	Visualisation	Design	screen,	select	the	Visualization	Type,	Axis,
Legend,	and	Values	as	applicable	based	on	the	visualization	type.

Figure	14-13:	Dashboard	–	Add	tile	–	Visualization	design

The	time	window	can	be	adjusted	to	display	data	for	up	to	one	hour.
The	types	of	visuals	that	can	be	created	on	a	dashboard	using	the	add	tile	function

is	limited.	You	can	create	the	following	types	of	visualizations:
●								Card
●								Line	chart
●								Clustered	bar	chart
●								Clustered	column	chart
●								Gauge

5.	 On	the	Tile	details	screen,	change	the	Title	and	Subtitle	as	needed.	You
can	also	link	the	visual	to	an	URL	or	redirect	to	a	report	or	dashboard
within	the	same	workspace.

Figure	14-14:	Dashboard	–	Add	tile	–	Tile	design
After	adding	the	visual,	the	data	on	the	visual	refreshes	in	real-time	as	the
PubNub	data	stream	refreshes.

Figure	14-15:	Real-Time	Dashboard

Push	datasets
This	method	gives	you	access	to	more	visuals	that	are	not	available	when
creating	live	tiles	on	the	dashboard.	As	mentioned	earlier,	there	is	a	small	latency
in	the	data	displayed	using	a	push	dataset.

1.	 Click	on	the	Create	report	icon	on	the	push	dataset.
Figure	14-16:	Push	dataset	–	Create	report

Note:	Only	the	push	dataset	has	this	option,	which	shows	that	you	can	start
creating	reports	using	this	dataset.	Streaming	datasets	cannot	be	used	to
create	reports.

2.	 Create	a	visual	on	the	report	of	the	type	that	is	not	available	in	the	live	tile
option.	For	this	example,	a	100%	Stacked	column	chart	is	used.

3.	 Pin	the	visual	to	a	dashboard.

Figure	14-17:	Pin	visual	to	dashboard

4.	 When	you	push	the	data	into	the	push	dataset	using	the	PowerShell	script
provided	in	the	earlier	section,	the	data	refreshes	with	a	small	latency	on
the	dashboard	tile.

Figure	14-18:	Real-time	streaming	-	dashboard	vs	report

Note	–	The	data	does	not	refresh	on	the	report	page.	You	need	to	refresh	the	report
page	to	see	the	new	data.

	

Summary
In	this	chapter,	you	have	seen	the	different	types	of	real-time	streaming	datasets
available	in	Power	BI.	You	have	learned	in	detail	the	usage	of	these	datasets,
which	will	help	you	in	choosing	the	right	option	for	your	requirement.	You	have
gained	the	knowledge	of	creating	datasets	and	pushing	data	into	these	datasets.
Finally,	you	have	seen	how	you	can	visualize	different	real-time	streaming
datasets	on	a	Power	BI	dashboard.

About	the	Author

Manohar	Punna	is	a	Data	Platform	Geek	and	Vice	President	of
DataPlatformGeeks.com	by	passion	and	a	Data	Platform	Consultant	by
profession.	He	is	a	speaker	at	various	events	around	the	world	like	PASS
Summit,	SQLBits,	SSGAS	/	DPS	conferences,	SQLSaturdays,	SQL	Server	Day
events,	and	many	user	groups.	He	has	a	wide	variety	of	experience	working	on
code	to	manage	physical	hardware,	database	administration	and	development,
architecting	databases	for	enterprises,	designing	and	building	end-to-end	BI
solutions	and	building	business	solutions	using	PowerApps	and	Flow.	He	has
authored	over	150	blogs	and	has	written	One	DMV	a	Day	series	which	is	the
most	extended	one-day	series	on	any	topic	on	SQL	Server	till	date.

	

Part	VI:	Power	BI	Usage	in	Enterprise
Environment

Chapter	15:	Introduction	to	Conversation-Centric
Design ™
	
Author:	Treb	Gatte
Many	organizations	are	challenged	when	attempting	to	design	business
intelligence	content	for	the	first	time.	Where	do	you	begin?	How	can	you	ensure
your	content	is	adopted?	The	Conversation-Centric	Design	approach	ensures	you
design	BI	content	that	is	aligned	to	the	business	need,	structured	where	you	can
manage	scope	and	ensures	that	it	is	clear	to	the	consumer	where	the	content
should	be	used.

“Spreadsheet	on	a	Web	Page”
Steve	plopped	in	his	office	chair	and	let	out	a	sigh.	Dipti,	his	team	manager,
seeing	him	return,	walked	over	to	his	desk.	“Hey	Steve,	how	did	the	dashboard
design	meeting	go?”,	she	asked.	“It	was	awful,	really.”	Steve	shook	his	head	and
explained.	“All	the	users	wanted	was	a	spreadsheet	on	a	web	page	so	that	they
could	see	all	the	details.”	“What	about	the	ability	to	show	data	graphically	in
Power	BI?”	she	asked.		He	replied,	“They	simply	couldn’t	see	how	it	applied	to
them	nor	could	they	explain	the	questions	they	were	looking	to	answer	from	the
one	big	spreadsheet.”	Dipti	frowned.	“We	will	need	to	try	again	with	this	group.
If	we	don’t	get	them	excited	by	the	visualization	capabilities,	this	highly	visible
project	is	going	to	fail	and	take	our	jobs	with	it.”

What’s	really	going	on	here?
This	scene	happens	over	and	over	in	many	workplaces	as	they	start	their	Power
BI	journey.	We	approach	Business	Intelligence	(BI)	content	development	as	a
blank	canvas	exercise.	Unfortunately,	most	people	are	not	Picasso	and	struggle
to	visualize	a	wonderful	solution	to	their	BI	needs	from	a	blank	canvas.	They
need	help	to	understand	what	decisions	are	important	to	make	and	how	does	that
map	to	their	BI	content	so	that	they	know	where	to	use	their	brand-new	reports
and	dashboards.

Figure	15-01:	Artist,	Jackson	Pollack	at	work
In	the	end,	many	design	their	BI	content	the	way	the	artist	Jackson	Pollack
created	art.	Pollack	would	throw	paint	at	the	canvas	and	a	masterpiece	would
emerge.	Unfortunately,	using	the	same	approach	with	data	ensures	that	you
deliver	many	reports	and	dashboards,	but	few	answers.

Conversation-Centric	Design™	Overview
The	Conversation-Centric	Design™	(CCD)	process	uses	the	user’s	social
interactions	to	provide	context	and	direction	for	the	development	of	Business
Intelligence	content.
All	work	is	inherently	social	within	the	workplace.	We	interact	socially	when:
●								We	create	work
●								We	are	assigned	work
●								We	have	questions	about	the	work
●								We	report	status	on	the	work
●								We	deliver	the	outcomes.

These	interactions	are	called	client	calls,	meetings,	projects,	hallway
conversations,	etc.	Many	of	these	interactions	are	formal	in	nature.	They	occur
regularly,	have	a	set	attendee	list	and	a	set	agenda.	Hence,	the	CCD	process
leverages	formal	interactions	as	a	starting	point	for	BI	content	design.

Why	formal	interactions?
Successful	adoption	of	new	BI	content	is	key	to	your	project’s	success.	Projects
that	change	the	way	a	person	works	fail	when	it	is	unclear	to	a	person	where	and
how	to	use	the	new	content	in	their	work.	Using	these	formal	interactions	makes
it	clear	to	the	impacted	person	where	to	apply	the	new	functionality.

Process	Overview
The	Conversation-Centric	Design™	process	has	four	distinct	phases	as	shown	in
the	figure	below.	The	intent	is	to	take	you	from	a	position	of	endless	possibilities
to	a	starting	point	with	clear	priorities	and	steps	to	deliver	them.

Figure	15-02:	Detailed	Conversation	Centric	Design	process

Discovery
The	discovery	phase	provides	the	steps	necessary	to	focus	your	efforts	on	the
key	conversations.	First,	we	start	by	cataloguing	the	key	conversations.	This	can
be	standing	meetings	or	common	interactions	like	status	reports	or	client
meetings.	The	goals	are	to	create	a	recognizable	list	of	conversations	and	a	list	of
audience	members	for	each	conversation.
The	conversation	list	is	used	for	four	purposes.
Scoping
This	use	enables	you	to	decide	which	conversations	to	invest	in	from	a	business
intelligence	perspective.	One	of	the	hardest	decisions	for	business	decision
maker	(BDM)	to	make	is	around	scoping	as	many	data	investments	are	opaque
to	them.	Providing	a	known	event	as	the	scoping	mechanism	means	the	BDM
understands	what	the	data	investment	impacts	and	the	relative	importance	of	the
event.	This	context	enables	the	BDM	to	make	an	informed	scoping	decision.
Prioritization
This	use	enables	the	BDM	to	decide	which	conversations	to	address	first.	This
aspect	enables	the	BDM	to	get	the	biggest	impact	for	the	investment.	If	they	are
hoping	to	win	support	in	the	executive	suite,	prioritizing	the	executive
conversations	first	ensures	the	audience’s	needs	are	met.
Status
The	business	event	list	provides	the	context	for	the	current	activity	and	status.
BDMs	are	usually	not	data	professionals	so	providing	status	on	data	models,
measures,	and	Extract-Transform-Load	(ETL)		processes	without	context,	results
in	glassy	eyed	looks,	nods	of	the	head,	and	zero	understanding	of	what’s	really
happening.	By	providing	updates	relative	to	the	business	event,	it	helps	the	BDM
in	understanding	where	the	impact	of	a	given	topic	will	lie.	We	should	still	take
steps	to	make	the	process	as	clear	as	possible	for	the	BDM.
Audience
Capturing	the	audience	per	conversation	forms	the	basis	for	a	security	model	and
for	testing	groups	later	in	the	process.	It	also	provides	a	list	of	stakeholders	for
reporting	status.
Many	business	intelligence	projects	only	consider	the	direct	requirements	of	the
requestor.	However,	once	implemented	more	broadly,	a	flurry	of	activity	results
as	other	stakeholder	needs	are	discovered	and	were	not	accommodated	in	the
design.	This	can	lead	to	expensive	rework.

Using	the	STAR	model	below,	you	can	consider	or	purposely	eliminate	the	needs
of	various	potential	stakeholders.	Doing	so	ensures	you	are	correctly	considering
a	broader	audience	if	needed.

Figure	15-03:	STAR	model	for	potential	audience	discovery

Example	of	Discovery	outcome
Conversation Frequency Audience Priority
VP	meeting Monthly,	usually

first	Wednesday
of	Month

Joe,	Pradeep,
Karthik,	Amy,
Mason

1

Project	Status
Meeting

Weekly	on
Monday

PM	and	PM
Team

4

Finance	Review Monthly	on	first
Tuesday	of
Month

Bill,	Susan	-
Accounting,	Joe,
Pradeep,
Karthik,	Amy,
Mason

2

3	+	9	Finance
Exercise

Quarterly Bill,	Susan	-
Accounting,	Joe,
Pradeep,
Karthik,	Amy,
Mason

3

	
Designing	the	context
Once	we	have	our	prioritized	list	of	conversations	from	Discovery,	we	start	to
break	down	the	activity	into	our	four	areas.	These	areas	are:
●								Defining	the	questions
●								Outlining	the	answers
●								Capture	end	user	terminology
●								Decide	answer	visualizations

Developing	Key	Questions
Conversation-Centric	Design	starts	with	a	key	conversation.	We’ll	discuss	how
to	decide	what	those	will	be	shortly.	For	example,	let’s	use	the	Monthly	VP
Meeting	as	an	example.
Using	a	meeting	like	this,	we	gain	a	lot	of	useful	information	quickly.	First,	we
know	what	the	conversation	generally	is	about	as	there	is	an	agenda	for	this
meeting.	We	know	the	audience	that	attends	the	meeting.	Looking	at	the	figure
below,	we	can	see	that	two	items	are	already	captured.
When	you	drill	into	the	meeting	agenda,	rephrase	the	items	as	a	series	of	key

questions.	For	example,	your	list	could	look	like	this:

Original	agenda	item Question	version
Budget	Update Where	are	we	with	regards	to	our

overall	budget?
What	are	our	top	five	deviations
from	budget?

Key	Projects	Update What	projects	are	running	late?
What	projects	are	finishing	this
month?
What	projects	are	starting	this
month?

Personnel	Update What	roles	are	short-staffed	over
the	next	six	months?
What	roles	are	being	filled
primarily	via	vendors?

	
The	next	step	is	to	group,	prioritize,	and	triage	the	questions	as	it	may	not	be
possible	to	address	all	questions	due	to	resource	constraints	or	other	factors.
Optimally,	this	should	be	done	by	the	attendees.	They	should	rank	the	questions
in	importance	and	the	input	should	be	used	to	stack	rank	the	questions.
Developing	the	Answers
Developing	the	answers	for	each	question	requires	deciding	several	aspects	to
ensure	you	have	what	you	need.	The	goal	is	to	uncover	mismatches	between
requirements	and	process.
For	example,	one	VP	has	determined	that	the	Budget	reports	need	to	be	refreshed
daily.	However,	the	process	that	delivers	the	budget	data	only	runs	monthly.
Therefore,	do	you	as	the	creator	want	to	face	a	VP	who	has	been	looking	at	the
reports	daily	expecting	changes	or	do	you	want	to	make	them	aware	of	this	issue
upfront?
Data
In	examining	the	questions,	a	key	need	is	identifying	the	source	and	data
elements	needed	to	address	the	question.	For	example,	the	question	“Where	are
we	with	regards	to	our	overall	budget?”	implies	that	the	budget	numbers	are	in	a
system	that	can	be	accessed	and	can	be	matched	with	expenditures	in	some
fashion.

Definition
When	formulating	the	answers,	it	is	very	important	to	clearly	define	the
conditions	that	influence	or	are	used	in	filters,	KPIs,	measures,	conditional
columns,	and	other	constructs.	As	you	will	see	later	in	the	chapter,	this	may	be
the	most	important	aspect	in	ensuring	expectations	are	met	and	all	data
consumers	have	the	same	shared	understanding	of	the	data	represented.
Granularity
Once	we	determine	that	the	data	exists	and	can	be	accessed,	the	next	question	is
one	of	granularity.	How	granular	does	the	answer	need	to	ultimately	be?	This
will	create	the	basis	for	groupings,	pivots,	and	what’s	the	lowest	level	of	data
available	to	view.
Process
We	also	need	to	understand	the	process	by	which	the	data	is	created	and
delivered.	In	some	cases,	direct	access	to	the	data	source	enables	faster	access.
However,	high	business	impact	data	such	as	financial	information	may	only	be
provided	on	a	recurring	basis,	in	a	summary	format	like	a	CSV	file.	The	timing
and	process	by	which	the	data	is	delivered	can	significantly	impact	delivered
functionality.	It	also	creates	a	data	requirement	to	include	the	last	modified	date
of	the	data	to	the	data	consumer	so	that	they	are	aware	of	the	data’s	age.
Terminology
Power	BI	has	a	powerful	ad	hoc	querying	tool	called	Q&A.	Q&A	depends	on	a
detailed	linguistic	schema	to	map	data	consumer	terminology	to	data	elements	in
the	Power	BI	Model	so	that	it	knows	what	to	data	to	query	when	asked	a
question.	As	you	are	developing	and	designing	questions	and	answers,	it	is
important	to	capture	the	language	used	by	the	data	consumer	when	referring	to	a
data	element.	This	can	be	incorporated	into	the	model’s	linguistic	schema,
making	Q&A	much	more	useful.	For	example,	if	I	have	a	column	called
ProjectName	in	the	data	source	but	my	consumers	call	them	Gantts,	schedules,
and	plans,	I’d	incorporate	those	three	terms	in	the	linguistic	schema	so	that	Q&A
would	understand	the	consumer	request.
Tool
Microsoft	provides	three	core	tools	for	Business	Intelligence:	Power	BI,	Power
BI	Paginated	Reports,	and	Excel.	It	is	imperative	to	pick	the	right	tool	for	the
need	to	prevent	brittle,	workaround	solutions.	For	example,	if	there’s	a	need	to
print	a	report	to	provide	to	field	personnel,	it	may	be	a	better	fit	for	Power	BI
Paginated	Reports	rather	than	attempting	to	engineer	a	solution	in	Power	BI

itself.
Visualization
Once	you	have	the	question	and	the	answer	with	permutations	decided,	you	can
classify	your	answer	to	determine	the	best	set	of	visualizations	for	the	need.	By
permutations,	the	answer	may	require	different	groups,	levels	of	rollup,	etc.
There	are	seven	types	of	visualizations.
●								Nominal	comparison

Comparison	of	quantitative	values	grouped	by	some	categorization
value.
Example:	Headcount	by	Department

●								Time-Series
Changes	in	one	or	more	metrics	over	a	defined	time	period
Example:	Year	to	date	expenditures

●								Ranking
Comparison	of	two	or	more	values	to	illustrate	relative	contribution
in	a	most	to	least	or	least	to	most	pattern
Example:	Top	5	projects	by	total	budget

●								Part	to	Whole
Comparison	of	a	data	subset	to	the	whole	data	set
Example:	Percentage	of	riders	of	a	specific	bus	line	compared	to
overall	riders

●								Deviation
Comparison	of	data	points	against	expected	data	values
Example:	Monthly	actual	sales	versus	projected	sales

●								Distribution
Visualization	of	data	distribution,	either	around	a	mean,	timeframe
or	some	other	nominal	value
Example:	Product	demand	by	age	group

●								Correlation
Changes	between	two	or	more	metrics	that	change	in	relation	to
each	other	in	a	positive	or	negative	way
Example:	Job	performance	ratings	versus	social	likeability	scores

Visualization	types	are	as	follows:
Type	of	Visual Example Use	Lines	to Use	Bars	to Use	Points

to
Suggested
Power	BI
Visual

Nominal
Comparison

Number	of
hours	logged
this	week
toward	a
project	versus
planned	hours
for	the	week

Show	deltas
between
values	and
overall	trend

Compare
between
individual
values

To	show
individual
values.	Add
a	line	to
highlight	the
trend

Column	Chart
Line	Chart
Table
Matrix

Time-Series Project	Costs
by	Month

Show	trends
in	the	data

Compare
between
individual
values

To	show
individual
values.	Add
a	line	to
highlight	the
trend

Column	Chart
Line	Chart

Ranking Top	5	Projects
by	ROI

	 Show
ranking,
which	is	the
most	common
use	of	bars

To	show
ranking
using	a
nonzero
based	scale

Funnel
Bar

Part	to	Whole Annual
Project
Investment	by
Strategic
Objective

	 In	place	of	Pie
Charts	to
improve
usability

	 Waterfall
Tree	Map
Stacked	Bar
Donut	Area

Deviation 	 Show	overall
trend

Highlight
magnitude	of
deviation

Denote
values	and
use	with	a
line	to	show
trend

Column	Chart
Gauge	Chart
Scatter	Plot

Distribution 	 Visualize	if
the	data
shape	is	most
important	to
communicate

Visualize	if
the	individual
values	are	the
most
important	to
communicate

	 Column	Chart
Area	Chart

Correlation 	 Use	with
scatter	plot	to
denote	trend

	 Use	to
denote
values

Scatter	Plot
Bubble	Plot

	
Gathering	the	data
This	phase	involves	the	creation	of	the	initial	data	model	in	Power	BI	or	could
be	used	to	modify	an	existing	data	model.	The	goal	is	to	ensure
●								The	list	of	data	sources	is	known	so	that	security	access	can	be	requested

●								The	requisite	data	is	available	from	the	identified	data	sources
●								Create	the	initial	data	model

Specifying	the	supporting	data
A	review	of	the	answers	outlined	above	provide	an	opportunity	to	determine	the
source	of	the	answer’s	data.
If	your	group	owns	the	data,	then	follow	your	normal	process	to	connect	to	the
data.
If	the	data	is	coming	from	an	external	system	source	that	is	managed	by	another
entity,	access	to	the	data	source	should	be	requested.	This	should	also	include	the
creation	of	data	access	accounts	with	requisite	licensing.	It	is	a	good	idea	to	be
engaged	with	the	data	source’s	change	management	process	so	that	as	they
upgrade	and	maintain	their	systems,	your	process	is	not	broken	by	inadvertent
changes.
If	the	data	is	being	sourced	from	a	manual	creation	process,	there	is	a	need	to
standardize	the	location	and	name	of	the	requisite	data	files.	A	change
management	process	for	the	data	structures	should	also	be	considered	for
ongoing	management.	Doing	so	ensures	that	inadvertent	changes	don’t	break	the
data	refresh	going	forward.
Mapping	to	data	sources
Once	all	data	sources	have	been	identified,	three	aspects	must	be	rationalized	to
ensure	use	of	the	data	will	lead	to	actionable	data.
In	many	cases,	you	will	need	to	combine	data	from	the	various	sources	to	create
a	model.	Doing	so	requires	a	set	of	common	key	values	between	tables.	For
example,	if	you	are	tracking	a	rolling	total	of	expenditures	and	need	to	compare
them	to	the	budget,	you’ll	need	a	key	such	as	budget	code	on	both	the	budget
and	expenditure	records	to	tie	them	together.
In	some	cases,	a	multi-part	key,	involving	multiple	column	values,	must	be	used
to	denote	a	unique	record.	To	ensure	Power	BI	can	work	with	this	effectively,
you’ll	need	to	synthesize	a	compound	key,	where	all	the	values	of	the	multiple
columns	are	concatenated	into	a	single	column	value.
Differences	in	data	granularity	is	another	difficulty	encountered.		Pulling	data
from	various	sources	are	usually	at	different	levels	and	types	of	granularity.	This
creates	issues	rationalizing	the	data.	For	example,	your	budget	information	is
only	available	by	cost	center	and	your	expenditures	are	at	the	transaction	level.
How	would	you	tie	these	together	to	create	a	project	level	summary?

Mismatches	in	data	refresh	cycles	can	also	lead	to	integration	issues.	Some	data
may	be	real-time,	others	refreshed	once	a	month.	As	you	bring	the	data	together,
a	time	scale	minimum	granularity	should	be	defined.
Create	initial	data	model
A	data	model	is	ideally	structured	in	a	star	schema	pattern.	By	this,	a	model
generally	has	facts	and	dimensions.	Facts	are	the	events	that	have	occurred.
Examples	of	this	can	be	transactions,	timesheet	entries,	status	updates,	etc.
Dimensions	are	those	entities	to	which	the	fact	applies.	For	example,	for	a
transaction,	dimensions	could	include	billing	company,	cost	center,	project,	etc.
Once	the	core	data	is	in	place	and	structured	correctly,	the	initial	measures,
summary	tables	and	other	transformations	should	be	put	in	place.	In	many	cases,
a	company	may	have	standard	elements	that	are	created	for	a	dimension	and/or	a
fact	table.	These	could	include	a	date	table,	for	example.	This	creates	the	basis
for	the	next	phase,	where	iterative	development	is	used	to	finalize	the	model	and
requisite	reports.
Build	the	solution
The	building	of	the	solution	starts	once	you	have	a	solid	design.	This	should
reduce	the	time	to	develop	the	solution	and	reduce	any	rework.	Note,	the
following	describes	an	iterative	approach	to	developing	business	intelligence
content.	Many	data	consumers	do	not	have	the	training	or	experience	to
formulate	the	final	visualizations.	The	iterative	process	gives	them	a	voice	in	the
process	as	well	as	builds	champions	for	the	final	implemented	product.
Note,	the	process	below	is	designed	for	large	business	intelligence	projects	with
high	visibility	in	the	organization.	The	process	can	be	streamlined	for	smaller
projects	as	needed.	The	key	learning	is	to	drive	the	test	process	rather	than
simply	reacting	to	it.	Simply	reacting	leads	to	scope	creep,	unmet	expectations
and	generally	longer	timelines	to	deliver.
Build	Prototypes
The	initial	report	prototypes	validate	the	design	process	findings	and	are	the	first
opportunity	for	the	data	consumers	to	be	hands	on.	A	focus	group	of	data
consumers	should	be	identified	from	the	earlier	audience	identification	and
recruited	to	help	with	this	validation.
In	most	cases,	the	data	author	should	be	listening	only,	with	the	session
facilitated	by	another	with	no	vested	interest	in	the	feedback.	Any	feedback	that
is	gathered,	should	be	reviewed,	triaged	as	to	whether	it	is	of	value	to	address,

and	then	work	assigned	to	incorporate	feedback.
To	prevent	runaway	scope,	there	should	be	a	set	number	of	review	rounds
initially	and	a	data	consumer	representative	should	be	part	of	the	feedback	triage
process.
Test	Prototypes
Once	you’ve	reached	a	specific	level	of	quality	with	the	model	and	reports,	an
extended	pilot	group	should	be	given	access	to	it	to	test	the	new	content.
It	is	imperative	that	you	provide	clear	guidelines	to	the	new	pilot	group	on	how
to	file	feedback,	what	is	considered	a	bug,	what	is	considered	a	change,	and	what
will	be	done	if	it’s	simply	product	behaviour.	There	should	also	be	a	task	plan
with	clearly	defined	assignments.	Otherwise,	you’ll	have	a	new	group	of	people
wandering	around	in	the	new	content	with	no	context	and	focusing	on	product
behaviour.	This	will	yield	feedback	of	little	value.
Typically,	a	few	rounds	are	necessary	to	get	everyone’s	feedback	and	to	have	the
feedback	triaged	and	prioritized.
Build	Final	Version
Once	the	test	phase	is	over,	the	final	build	out	of	the	content	occurs.	The	work
plan	of	remaining	items	should	be	tracked.	The	content	should	be	packaged	as	an
app	and	released	according	to	internal	procedures	to	the	target	audience	defined
earlier.

A	Real	World	Example
Steve,	a	business	analyst	in	the	IT	group,	received	the	following	request	from
Donna,	an	IT	Director.
“Steve,	we	need	a	dashboard	for	our	IT	Managers	and	Finance	personnel	to	use
in	the	Monthly	Review	meeting.	This	will	be	used	to	see	project	related	data.
How	soon	do	you	think	you	can	get	that	done?”
Steve	sighed	and	thought,	“It’s	time	to	put	this	CCD	training	to	work.”
First	step	is	to	enumerate	the	conversation.	He	highlighted	the	phrase	as	follows,
as	this	gave	him	the	conversation	and	the	timing.
Steve,	we	need	a	dashboard	for	our	IT	Managers	and	Finance	personnel	to	use
in	the	Monthly	Review	meeting.	This	will	be	used	to	see	project	related	data.
How	soon	do	you	think	you	can	get	that	done?”
Next	step	was	to	determine	the	audiences.	Steve	highlighted	the	following.
Steve,	we	need	a	dashboard	for	our	IT	Managers	and	Finance	personnel	to	use
in	the	Monthly	Review	meeting.	This	will	be	used	to	see	project	related	data.
How	soon	do	you	think	you	can	get	that	done?”
Steve	frowned,	“What	I	don’t	see	is	any	actual	questions	in	this	request.”	He
replied	to	Donna	with	some	questions	about	what	questions	needed	to	be
answered	for	the	IT	Managers	and	for	Finance.	This	dialog	continued	for	a	bit.
As	he	learned	in	his	training,	he	needed	short	questions	that	started	with	Who,
What,	When,	Where,	Which	or	How	much.	At	the	end	of	the	exchange,	he	had
the	following	questions.

Audience Monthly	Review	Conversation
IT	Management Which	projects	are	behind?

Which	projects	are	finishing	this
month?
What	are	the	upcoming	key
milestones	this	month?

Finance	for	IT What	projects	are	over	budget?
What	are	the	anticipated	capital
expenses	for	this	month?

	
Steve	decided	to	focus	on	the	first	question	to	train	Donna	in	what	he	needed,	as
this	was	her	first	time	asking	for	content.	Once	she	understood	what	he	needed,

the	process	would	go	quickly.
Since	this	was	an	extension	to	an	existing	model,	he	knew	the	data	would	be
coming	from	Project	Online.	However,	he	still	needed	to	identify	the	data	fields
once	this	request	was	clearly	defined.	He	looked	at	Project	and	saw	there	was
many	projects.	Also,	what	did	they	mean	by	behind?
He	replied	with	the	following	questions.
With	regards	to	the	What	projects	are	behind	question,
●								What	kind	of	projects	should	be	included	in	the	report?	Capital?	All?
●								Define	the	criteria	for	“behind.	“

Is	it	Planned	>	Baseline?
Is	it	some	percentage	variance?
Is	it	schedule	or	cost?

After	several	iterations,	they	finally	arrived	at	the	following	criteria.
●								Show	all	capital	projects	over	$250,000	in	total	spend	where	the	planned

finish	date	is	greater	than	30	days	past	their	baseline	finish	date.
Steve	gave	some	thought	as	to	how	this	might	be	visualized.	He	decided	that
three	levels	of	data	were	appropriate.	This	would	provide	several	pivots	without
being	overwhelming.	This	would	also	set	up	the	report	to	enable	drill	through	to
other	detailed	reports.

Figure	15-04:	Page	layout	for	new	project	report

He	decides	to	use	cards	for	the	max	delay	information	since	it’s	an	overall
number.	He’ll	use	the	Stacked	bar	chart	visual	to	do	the	project	stack	rank	by
delay	visual.	Finally,	he’s	using	the	table	visual	to	show	key	information	for	each
individual	project.
His	first	prototype	looks	like	the	following.	The	entire	page	is	structured	around
a	single	question	and	the	number	of	visuals	is	kept	to	a	minimum.	He	repeats	this
process	for	each	of	the	questions.

Figure	15-05:	Screenshot	of	prototype
Steve	reviews	the	prototype	with	Donna.	She	sees	how	the	reports	are	question
focused	and	understands	how	these	can	be	easily	used	and	explained.	She	asks
for	specific	drill	throughs	to	other	reports	which	Steve	can	do.	She	also
appreciates	the	ability	to	add	new	pages	as	new	questions	arise,	without	having
to	re-architect	every	report.
Once	Steve	is	done	with	the	changes,	Donna	signs	off	on	it.	He	publishes	the
final	version	to	a	new	workspace	in	PowerBI.com.	This	is	used	to	create	the	IT
Monthly	Meeting	app,	which	Steve	publishes	and	assigns	security	rights	to	the
IT	Managers	and	Finance.

Summary
The	Conversation-Centric	Design™	process	streamlines	the	development	of
business	intelligence	data	by	providing	a	framework	that	helps	you	anticipate
and	address	issues	before	they	arise	in	the	development	process.	Once	a	solid
base	of	content	is	in	place,	it	also	makes	it	easier	to	maintain	that	content	over
time	as	the	requisite	documentation	is	created	as	the	content	is	developed.
Real	world	use	also	shows	it	increases	adoption	of	content	since	the	delivered
apps	are	aligned	with	the	business	activity	that	drove	the	need	for	the	content.	It
also	reduces	the	risk	of	changing	reports	since	the	exposure	of	a	given	report
collection	is	limited	to	a	single	business	activity.
For	questions	about	Conversation-Centric	Design™,	contact	us	at
hello@marqueeinsights.com.

mailto:hello@marqueeinsights.com

About	the	Author

Trebuel	Gatte,	CEO,	MarqueeInsights.com
Treb	Gatte	is	a	business	intelligence	expert	with	24	years	of	experience.
Prior	to	becoming	CEO,	he	worked	in	leadership	positions	at	Microsoft,
Starbucks,	Wachovia	(now	Wells	Fargo).	He	has	been	recognized	as	Data
Platform	MVP	from	Microsoft.
He	lives	in	the	Seattle	area	with	his	wife,	children	and	corgi	and	holds	an	MBA
from	Wake	Forest	University.
This	chapter	is	an	approved	excerpt	from	the	book,	Introduction	to
Conversation-Centric	Design ™ ,	ISBN:	978-1-7333418-0-6,	©	2019	Trebuel
Gatte,	Marquee	Insights.	Al	rights	reserved.
	

Chapter	16:	Understanding	when	to	move	to	Power	BI
Premium
	
Author:	Gilbert	Quevauvilliers
When	looking	at	Power	BI	Premium	there	are	a	lot	of	options	available	to	you
with	Power	BI	Premium.	At	times	when	there	are	too	many	options	and	it	can
potentially	be	a	challenge	to	understand	which	features	are	applicable	for	your
situation.	In	this	chapter	you	will	gain	a	better	understanding	of	what	these
options	are.	By	having	a	deeper	understanding	of	the	Power	BI	Premium
features,	it	will	allow	you	to	make	a	more	informed	decision	on	looking	to	move
to	Power	BI	Premium.
Whilst	the	list	below	is	not	comprehensive	it	does	overview	the	standard	set	of
features	that	are	currently	available	in	Power	BI	Premium	as	at	July	2019	(Please
refer	to	https://docs.microsoft.com/en-us/power-bi/service-premium-what-is)

https://docs.microsoft.com/en-us/power-bi/service-premium-what-is

Dedicated	Performance
When	looking	to	move	to	Power	BI	Premium,	one	of	the	advantages	is	having
dedicated	performance.		What	currently	happens	when	you	are	using	the	Power
BI	Service	you	are	using	a	shared	environment.
If	I	had	to	put	this	into	an	example,	it	would	be	you	are	sitting	in	an	aeroplane	as
you	to	today.	There	are	a	lot	of	people	in	the	aeroplane,	but	you	are	sharing	not
only	the	costs	of	having	to	fly	the	aeroplane,	but	you	too	are	sharing	all	the
components	(engines,	fuel,	entertainment,	pilots,	air	hosts,	etc.)	that	make	up	the
aeroplane.
Whilst	when	you	move	to	Power	BI	Premium	you	are	now	flying	on	your	private
jet.	Here	you	do	not	share	anything	with	anyone	else;	the	entire	aeroplane	is
available	for	you	to	use	as	you	so	wish.
The	same	applies	to	Power	BI	Premium,	where	you	now	have	dedicated	CPU
and	Memory.
At	the	time	of	writing	this	book	(July	2019),	there	are	the	following	dedicated
capacities	for	Power	BI	Premium,	which	indicates	how	much	memory,	CPU,	and
Storage	per	capacity	that	you	purchase.
The	details	below	have	been	taken	from	the	Power	BI	Whitepaper	Deploying
and	Managing	Power	BI	Premium	Capacities	(https://docs.microsoft.com/en-
us/power-bi/whitepaper-powerbi-premium-deployment)

Figure	16-01:	Table	showing	different	Power	BI	Capacities
A	quick	overview	of	what	each	of	the	Capacities	is:
●								EM	–	This	is	for	Embedding	Power	BI	into	an	application	(An

https://docs.microsoft.com/en-us/power-bi/whitepaper-powerbi-premium-deployment

application	is	your	custom	application	that	is	not	part	of	the	Power	BI
Service).

●								A	–	This	is	also	for	embedding	Power	BI	into	an	application	(An
application	is	your	custom	application	that	is	not	part	of	the	Power	BI
Service).	The	difference	here	is	that	it	is	run	from	Azure.	The	advantage
of	running	it	from	Azure	is	that	you	get	the	Azure	functionally	to	start	and
pause	the	embedded	capacity	as	is	required.	You	can	also	scale	up	and
scale	down	the	capacity	as	required.

●								P	–	This	is	the	Premium	capacity	where	it	can	be	used	within	the	Power
BI	Service	and	assigned	to	specific	app	workspaces,	my	workspace	(users’
workspaces)	or	for	the	entire	organization.	One	additional	thing	to	note	is
that	the	P	Capacity	can	also	be	used	for	embedding	into	an	application.

The	current	way	to	purchase	the	Power	BI	EM	or	P	Capacities	is	through	the
Office	365	portal.	This	is	because	Power	BI	currently	falls	under	the	Office	365
stable	of	products.
If	you	are	looking	to	use	the	A	Capacity	that	can	be	created	through	the	Azure
Portal.
Here	are	some	of	the	reasons	you	might	be	looking	to	move	to	Power	BI
Premium	for	the	dedicated	performance.

Free	Users
What	happens	is	that	very	often,	there	is	a	dataset	or	a	report	that	can	assist	a
large	number	of	users	in	your	organization.	You	do	not	want	to	license	each	user
individually	to	simply	view	and	interact	with	a	report.
By	using	Power	BI	Premium,	you	can	use	the	feature	of	free	users	who	can	view
the	content	in	an	App	Workspace	that	has	been	assigned	to	Power	BI	Premium
(This	only	applies	on	the	P	SKU)
What	could	also	be	considered	is	if	there	is	a	pricing	breakpoint	between	the
number	of	users	who	need	to	view	dashboards	and	reports	when	compared	to
purchasing	Power	BI	Pro	licenses.	It	is	a	good	exercise	to	investigate	as	there
might	be	some	great	cost	savings.

XMLA	End	Points
XMLA	endpoints	is	fancy	terminology	for	meaning	that	you	can	connect	to	your
Power	BI	Premium	dataset	with	other	tools	such	as	Excel.
The	way	I	would	explain	XMLA	endpoints	from	the	standpoint	of	reporting	is

that	any	client	tool	that	can	currently	connect	to	SQL	Server	Analysis	Services
(SSAS)	Multidimensional	will	also	be	able	to	connect	to	Power	BI	Premium
capacities.
As	it	stands	today	July	2019,	the	XMLA	endpoints	are	ready-only.	In	the	future
are	plans	for	the	XMLA	endpoints	will	change	to	read-write,	which	will	allow
for	a	lot	greater	management	of	your	Power	BI	Premium	capacities.
If	you	are	looking	to	leverage	other	tools	which	have	connectivity	to	SSAS
cubes	such	as	Excel,	Tableau,	or	others,	then	this	is	an	option	to	consider.

Higher	Refreshes
Currently,	when	using	Power	BI	Pro,	you	are	limited	to	8	refreshes	a	day.	When
you	have	an	App	Workspace	assigned	to	Power	BI	Premium	you	can	then	have
up	to	48	scheduled	refreshes	per	day.
This	means	that	during	the	core	business	hours	(being	8	hours	a	day),	you	could
refresh	the	dataset	every	15	minutes.
One	thing	to	note	is	that	you	would	need	to	ensure	that	your	dataset	will	have
completed	refreshing	within	the	15	minutes	time	frame,	for	the	next	refresh	to
start.
With	higher	refreshes,	you	can	refresh	the	data	as	often	as	you	like	when	using
the	Refresh	API.
There	are	some	other	considerations	to	think	about	when	refreshing	data,	which
will	be	covered	next	when	using	Incremental	Refreshing.
If	you	have	data	that	is	frequently	updating	this	enables	you	to	do	this	with
Power	BI	Premium.

Incremental	Refresh
Before	I	get	into	incremental	refreshing,	I	think	it	will	be	good	to	over	off	what
incremental	refreshing	is.
The	best	way	to	describe	it	is	by	using	another	example.
When	you	import	sales	data	into	Power	BI,	it	all	gets	imported	into	one	big	table
as	shown	below.

Figure	16-02:	Complete	Sales	Data	table
If	we	had	to	take	a	closer	look	at	your	sales	data,	it	will	typically	always	have	a
date	for	when	the	sales	took	place.
If	we	had	to	look	at	the	same	sales	data	table	in	another	view,	it	looks	like	this
too.

Figure	16-03:	Sales	Data	table	with	months	(partitions)
What	you	see	above	is	that	even	though	the	sales	data	is	still	in	one	table,	there
are	three	segments	of	data.	One	for	each	month	where	there	is	data,	being	Jan	–
Mar	2019.
What	incremental	refreshing	is,	it	will	NOT	refresh	all	the	data,	but	rather

refresh	the	latest	data?	Which	means	that	it	will	incrementally	refresh	the	new	or
updated	data.	And	not	refresh	the	entire	sales	data	table.

Figure	16-04:	Sales	Data	table	highlighting	the	month	of	Mar	2019
Using	the	above	example	if	our	current	month	we	were	in	was	Mar	2019,	when
configuring	the	incremental	refreshing,	it	would	only	refresh	the	Mar	2019
portion	of	the	sales	data	table.
From	the	above	image,	each	of	the	months	is	known	as	partitions	when	using
incremental	refresh.
There	are	some	distinct	advantages	of	using	incremental	refresh

Refreshes	are	quicker
Because	you	now	do	not	have	to	refresh	the	entire	dataset,	but	only	a	subset	of
the	data	it	will	refresh	a	lot	faster.
This	is	because	if	you	had	a	table	with	three	years’	worth	of	data,	it	would	have
to	refresh	360	000	rows	(The	number	is	derived	by	assuming	that	each	month
has	got	10	000	rows).
Whilst	if	you	only	had	to	refresh	the	current	months’	worth	of	data,	that	would
mean	only	refreshing	10	000	rows	(if	it	was	a	complete	month,	or	even	fewer
rows	if	it	was	during	the	month).
If	we	had	to	put	this	into	a	comparative	chart,	you	could	see	how	much	less	data
there	is	to	refresh.

Figure	16-05:	Comparison	for	refreshing	the	entire	Sales	data	table	vs.
refreshing	the	Mar	2019	partition

Fewer	resources	are	required
One	of	the	things	to	always	be	aware	of,	as	is	typically	the	case	when	using
dedicated	resources	is	that	you	only	have	a	certain	amount	of	resources	that	you
can	utilize.
When	using	incremental	refreshing,	it	will	use	a	lot	fewer	resources	if	you	had	to
compare	it	to	refreshing	the	entire	sales	dataset.
If	we	have	a	look	at	the	chart	above	and	assume	that	it	represents	resources,	you
can	very	quickly	see	that	March	2019	will	use	a	lot	less	resources.
One	thing	to	note	is	that	as	with	all	things	in	Power	BI,	it	will	depend	on	a	lot	of
factors	in	how	much	resourcing	saving	you	will	get,	but	without	a	doubt,	you
will	use	a	lot	less	resources	when	using	incremental	refreshing.
The	image	below	you	can	see	how	the	incremental	refresh	uses	a	lot	less
memory	compared	to	a	full	dataset	refresh

Figure	16-06:	Chart	showing	how	different	dataset	refreshes	affect	memory
consumption
If	you	are	using	larger	datasets	and	looking	to	get	the	data	refreshed	as
quickly	as	possible	incremental	refreshing	could	be	a	solution.
Another	reason	to	decide	to	use	Incremental	refreshing	is	if	you	want	the
refresh	to	consume	fewer	resources,	mainly	memory	and	CPU,	this	could	be
a	viable	option	to	allow	that	to	happen	in	a	very	efficient	manner.

Dataset	size	larger	than	1GB
When	looking	to	use	Power	BI	Premium	another	reason	to	use	it,	is	that	it	allows
you	to	use	datasets	that	are	larger	than	the	1GB	file	size	limit	when	using	Power
BI.
Whilst	the	Vertipaq	engine	(this	is	the	compression	engine	that	runs	Power	BI)	is
very	good	at	compressing	data	a	lot	of	organizations	have	a	lot	of	data,	and	it
simply	will	not	fit	into	the	1GB	PBIX	file	size,	which	is	a	limitation	in	the
Power	BI	Service	not	on	the	actual	PBIX.	This	is	where	Power	BI	Premium
could	be	a	solution	for	you.
As	shown	previously	and	shown	again	below,	there	are	different	capacities	that
you	can	buy	based	on	how	large	your	dataset	is.
Note,	the	image	below	only	shows	the	Power	BI	Premium	Capacities	for	the	P
capacities.	This	is	because	these	are	the	only	ones	that	can	be	used	within	the
Power	BI	Service.

Figure	16-07:	Power	BI	Premium	P	Capacities
Another	thing	which	you	must	take	note	of	is	when	moving	to	Power	BI
Premium	it	is	not	the	size	of	the	PBIX	that	determines	how	many	resources	you
consume,	but	rather	how	much	memory	the	PBIX	consumes	once	it	is	loaded
and	people	are	using	the	reports	or	dashboards	used	in	queries	when	interacting
with	the	data.
To	determine	how	much	memory	your	PBIX	is	going	to	consume,	there	are	two
ways	to	determine	this.
As	a	working	example,	the	size	of	my	PBIX	is	shown	below

Figure	16-08:	File	size	of	the	PBIX	when	stored	on	disk

Actual	memory	consumption
A	better	way	to	see	how	much	memory	the	PBIX	will	consume	is	to	find	the

msmdsrv.exe
You	can	complete	the	following	steps	below.
●								Make	sure	you	only	have	got	one	Power	BI	Desktop	File	Open.
●								Now	right-click	on	the	taskbar	and	select	Task	Manager

Figure	16-09:	Task	Manager	selection
●								Next	click	on	the	Details	tab.
●								The	easiest	way	to	find	the	msmdsrv.exe	is	I	click	on	the	Name	to	sort	it

alphabetically

Figure	16-10:	Task	Manager	Window	sorting	by	Name
I	then	click	on	any	item	under	Name
I	then	type	“ms”	which	allows	me	to	then	go	down	to	a	name	that
starts	with	“ms”
I	can	then	find	my	msmdsrv.exe

●								As	you	can	see	below	my	current	PBIX	is	using	about	318MB	of	memory

Figure	16-11:	msmdsrv.exe	memory	usage	when	using	Task
Manager	Window

●								NOTE:	Even	though	it	is	currently	using	318MB	of	memory	I	am
currently	not	interacting	with	the	report,	which	would	very	likely	increase
the	amount	of	memory	consumed.	Not	by	a	significant	amount,	but	just
something	to	be	aware	of.

A	quick	tip	is	if	you	want	to	understand	what	is	consuming	all	the	memory	in
your	PBIX,	you	can	use	the	Vertipaq	Analyzer.
This	is	a	tool	that	has	been	created	by	the	great	people	from	SQLBI.COM
Here	is	the	link	to	where	you	can	find	their	blog	post:
https://www.sqlbi.com/articles/data-model-size-with-vertipaq-analyzer/
Part	of	this	blog	post	also	has	a	link	to	the	Excel	file	that	you	can	download	and
allow	you	to	see	which	columns	are	consuming	a	lot	of	memory.	Another	use

https://www.sqlbi.com/articles/data-model-size-with-vertipaq-analyzer/

case	is	you	could	use	the	XMLA	endpoints	to	see	how	much	space	is	being	used.
There	are	times	when	either	certain	columns	can	be	removed	(because	they	are
not	needed)	or	they	can	be	changed,	which	can	drastically	affect	the	amount	of
memory	consumed.
The	Microsoft	Power	BI	team	have	indicated	that	they	will	be	removing	the	limit
on	dataset	sizes	which	is	currently	set	as	at	July	2019	to	1GB	for	Power	BI	Pro
Users	and	10GB	for	Power	BI	Premium.
There	is	also	an	upcoming	feature	where	they	are	going	to	allow	you	to
potentially	store	dataset	sizes	of	up	to	4TB.	More	on	those	details	will	be
available	on	the	Power	BI	Roadmap.
When	looking	into	larger	dataset	sizes	as	a	reason	to	move	to	Power	BI	Premium
it	is	often	a	use	case	that	not	only	do	you	need	the	larger	dataset	size,	but	it
almost	goes	hand	in	hand	with	incremental	refreshing.

Paginated	Reports
And	currently,	a	lot	of	organizations	have	invested	a	significant	amount	of	time
in	the	creation	and	development	of	SQL	Server	Reporting	Services	(SSRS).
These	were	originally	the	first	type	of	reports	that	allowed	the	business	users	to
run	their	reports,	change	the	parameters,	and	self-serv.
The	SSRS	reports	were	also	very	good	at	creating	pixel-perfect	reports,	which
allowed	for	the	printing	of	the	reports	for	a	lot	of	business	users.
Not	only	that,	but	the	business	users	could	also	export	the	data	in	the	reports	into
multiple	formats.
And	finally,	the	SSRS	reports	could	be	set	up	with	a	schedule	to	allow	the	SSRS
reports	to	be	emailed	to	you.	This	meant	that	the	business	users	could	get	the
SSRS	reports	either	in	the	Inbox	or	from	a	folder	location.
While	this	is	great	for	On-Premise	solutions,	there	is	also	the	requirement	to
have	all	the	above	functionality	within	the	Power	BI	Service.
It	was	called	Paginated	Reports	when	moving	to	the	Power	BI	Service;	this	was
first	announced	on	11	July	2018	at	the	Business	Applications	Summit.
Paginated	then	went	Generally	available	on	09	June	2019.
As	with	all	things	being	migrated	from	an	On-Premise	solution	to	the	cloud,	they
do	take	time	to	get	there.	And	as	has	been	the	approach	with	Power	BI	is	that
they	release	new	products	or	features	with	limited	functionality	and	then	build
new	features	as	defined	by	the	customers,	idea’s	and	their	roadmap.
As	it	stands	today,	paginated	reports	do	not	have	full	feature	parity	with	SSRS.
The	paginated	reports	team	has	confirmed	that	their	goal	is	to	have	all	the
features	in	SSRS	available	in	paginated	reports.
When	looking	to	move	SSRS	reports	to	paginated	reports,	you	would	have	to
first	consider	if	paginated	reports	have	the	features	that	you	are	looking	for.
After	which	you	would	then	need	to	plan	to	move	your	SSRS	reports	to
paginated	reports.
One	of	the	major	advantages	of	having	paginated	reports	in	the	Power	BI
Service	is	that	you	now	have	one	central	location	for	all	the	reporting
requirements	in	your	organization.	You	could	also	look	at	using	Power	BI	Report
Server	which	is	the	On-Premise	Version	of	Power	BI	and	SQL	Server	Reporting
Services	(Paginated	reports)

This	simplifies	where	and	how	users	can	get	the	data	that	they	need.
Paginated	reports	also	use	existing	features	and	shared	and	certified	datasets,
which	can	be	consumed	by	paginated	reports.	By	having	a	shared	dataset,	it
means	that	both	Power	BI	reports	and	paginated	reports	will	be	able	to	use	a
single	data	source	for	multiple	reports.	This	goes	a	long	way	to	ensure	that	when
multiple	people	are	looking	at	data	or	making	decisions,	no	matter	what	format
they	are	using	the	numbers	remain	the	same.

Geographic	Distribution
Another	interesting	feature	that	is	only	available	to	Power	BI	Premium	is	the
geographic	distribution	of	your	data.
What	geographic	distribution	means	is	that	you	can	physically	host	your	data	in
a	Power	BI	Premium	App	workspace	in	another	geographic	location.
Typically,	there	are	two	reasons	why	you	would	be	looking	to	using	the
geographic	distribution	feature.

Data	Sovereignty
Data	sovereignty	is	another	word	for	ensuring	that	your	data	is	hosted	in	the
country	or	location	which	has	been	defined	by	a	company	or	country	regulations.
This	often	happens	when	certain	countries	have	defined	that	all	data	must	reside
within	their	borders.
If	you	are	a	global	organization	and	have	users	around	the	globe	and	have
transactions	from	multiple	countries	where	the	data	must	reside	in	the	country
where	the	data	was	transacted,	this	is	another	great	option.	This	is	where	having
the	geographic	distribution	feature	is	valuable.

Performance
Along	the	same	lines	as	the	example	above	with	having	a	global	organization,
there	could	be	users	who	want	to	access	their	reports	with	the	best	performance
possible.
The	business	users	could	be	on	the	other	side	of	the	world,	so	when	one	part	of
the	business	has	finished	their	working	day,	the	other	part	of	the	business	is	just
starting	their	day.	Or	it	could	be	where	one	user	is	in	Europe	and	another	user	is
in	Southern	Africa.
By	having	the	capability	to	be	able	to	have	the	data	hosted	in	the	same	country
or	close	by	a	location	means	that	interacting	with	the	reports	is	a	lot	faster.	This
is	because	potentially	the	data	does	not	have	to	travel	half	way	around	the	world
to	be	executed,	and	then	travel	half	way	around	the	world	getting	back	to	see	the
results.
As	shown	below	for	data	to	travel	from	the	USA	(New	York)	to	the	UK
(London)	is	roughly	5,500km	and	would	take	an	estimated	200	milliseconds
(ms)	to	travel	there.
	

Whilst	if	the	data	had	to	travel	within	the	UK,	it	would	travel	possibly	less	than
100km	and	would	take	less	than	an	estimated	40ms

	
Figure	16-11:	Distance	between	2	offices.
Another	advantage	of	looking	to	use	geographic	distribution	is	that	if	there	is
any	maintenance	or	updates	required	to	reports,	they	could	be	done	in	an	App
Workspace	whilst	those	users	are	not	at	work.	This	allows	for	additional	testing
and	ensuring	that	the	reports	and	dashboards	are	updated	and	ready	for	those
users	when	they	get	into	the	office	the	following	day.

Dataflows
Dataflows	are	in	Power	BI	is	a	way	to	unify	data	from	different	sources	using
Power	Query	Online.	All	the	data	is	stored	within	Power	BI	(Azure	Data	Lake
Gen2)	and	allows	other	users	to	consume	dataflows	within	their	reporting.
Below	some	considerations	where	using	dataflows	in	Power	BI	premium	might
help	assist	you	in	moving	some	capabilities	to	Power	BI	Premium.

Linked	Entities
It	is	best	to	explain	what	linked	entries	are	in	dataflows.
Let	me	take	a	step	back	and	explain	when	you	import	data	using	dataflows,	the
data	is	taken	from	the	source	and	then	put	into	a	dataflow.
Now	each	time	you	refresh	data	in	a	dataflow,	it	then	goes	back	to	the	source	and
refreshes	the	data	from	the	source.
Now	when	the	linked	entity	is	refreshed,	it	does	not	have	to	go	back	to	the
source	data,	but	rather	it	gets	the	data	from	the	existing	dataflow.	This	allows	for
a	much	faster	refresh	of	the	data	because	it	simply	gets	the	data	from	the
dataflow	that	is	already	stored	in	the	Power	BI	Service.
One	of	the	key	features	of	a	linked	entity	is	that	as	a	business	user,	you	do	not
have	to	understand	how	the	linked	entities	pieced	(how	they	relate	to	each	other)
together,	and	in	what	order	they	need	to	be	refreshed.
All	of	this	is	handled	by	Power	BI	Premium,	and	if	there	is	an	underlying
dataflow	that	must	be	refreshed	for	your	linked	entity	to	be	refreshed,	Power	BI
Premium	is	aware	of	this	and	will	do	it	for	you	automatically.

Computed	Entities
Another	feature	that	can	assist	an	organization	is	computed	entities.
Where	computed	entities	it	is	different	is	that	you	created	a	linked	entity	off	an
existing	dataflow.	It	also	allows	for	you	to	create	in-storage	computations.	In-
Storage	computation	means	that	it	does	not	have	to	go	back	to	the	source	data	to
complete	the	computations,	but	rather,	it	is	done	within	the	existing	dataflow.
It	could	also	be	described	as	when	using	the	Reference,	Duplication,	Append	or
Merge	functions	in	Power	Query.
These	computed	entities	can	then	be	linked	to	other	entities	that	you	have
already	created.
Computed	entities	also	mean	that	when	the	data	is	refreshed,	it	is	then	taken

from	data	that	already	exists	in	the	dataflow.	This	speeds	up	the	dataflow	refresh
performance	significantly.

Incremental	refresh
As	explained	previously	on	how	incremental	refresh	works	and	what	it	does.
There	is	also	the	capability	to	use	incremental	refreshing	in	dataflows.	This	has
the	same	advantages	in	that	it	does	not	have	to	refresh	the	entire	dataflow.
As	well	as	also	allow	for	consuming	fewer	resources	and	a	faster	refresh	of	the
data.

Parallel	Execution	of	transformations
Another	reason	to	potentially	investigate	using	dataflows	in	Power	BI	Premium
is	that	it	allows	you	to	have	your	transformations	run	in	parallel.
This	means	if	you	have	multiple	dataflows	refreshes	happening	at	once,	more
than	one	can	run	at	the	same	time.	Which	once	again	increases	the	performance
of	the	dataflow	refresh.

Enhanced	Compute	Engine
One	of	the	new	features	that	are	coming	to	Power	BI	Premium	is	an	enhanced
compute	engine.
This	allows	you	to	be	able	to	ingest	data	up	to	20x	quicker	than	is	currently
possible.	This	is	done	by	using	a	new	compute	layer	which	can	ingest	the	data	in
a	very	efficient	manner.	It	could	be	described	as	almost	SQL	like	when	ingesting
the	data.	This	makes	it	extremely	efficient	when	ingesting	data	that	requires	joins
or	merges.
Ideally,	you	would	import	your	data	using	the	new	compute	engine	and	then	use
the	computed	entities	to	complete	the	in-storage	computations	as	explained	in
the	section	above	on	how	to	leverage	computed	entities.

Monitoring	for	Power	BI	Premium
Whilst	this	does	not	cover	when	to	move	to	Power	BI	Premium	specifically,
ensuring	that	you	monitor	your	Power	BI	Premium	capacity	will	enable	that	you
are	using	all	the	resources	available	to	you.
Along	with	this,	if	you	start	running	into	performance	issues,	having	the	ability
to	use	the	Power	BI	Premium	monitoring	will	allow	you	to	quickly	and	easily
troubleshoot	where	there	is	a	performance	issue.
There	are	the	following	workloads	that	are	currently	available	in	Power	BI
Premium	(as	at	July	2019)

	
	

Figure	16-13:	Power	BI	Premium	Capacity	Settings
There	is	also	an	insightful	and	detailed	Power	BI	Premium	performance

whitepaper	that	I	would	recommend	any	user	who	is	administering	Power	BI
Premium	read.
The	link	to	Power	BI	Premium	can	be	found	here:	https://docs.microsoft.com/en-
us/power-bi/whitepaper-powerbi-premium-deployment

https://docs.microsoft.com/en-us/power-bi/whitepaper-powerbi-premium-deployment

Summary
There	are	multiple	considerations	that	you	must	investigate	when	moving	to
Power	BI	Premium.
In	this	chapter,	I	have	gone	through	the	different	Power	BI	capabilities	and	by
gaining	a	better	understanding	of	how	each	of	the	capabilities	works.
AI	is	becoming	essential	in	a	lot	of	organizations,	and	when	looking	to	use
Power	BI	Premium,	there	are	more	AI	features	being	released,	which	allows	for
easier	integration	with	your	existing	data	assets,	which	allows	organizations	to
quickly	use	AI	for	better	data-driven	decisions.
With	this	knowledge	of	the	capabilities,	you	can	then	leverage	the	Power	BI
Premium	capabilities	to	enhance	further	or	solve	future	or	current	reporting
requirements	in	Power	BI	Premium.
	

About	the	Author

I	am	a	Power	BI	&	Data	Analytics	Consultant,	having	over	12	years’	experience
working	in	Business	Intelligence	or	Data	Analytic	solutions	on	the	Microsoft
Platform.
I	have	successfully	implemented	solutions	for	small	to	large	enterprise
customers.
Recently	I	have	focused	on	Power	BI,	with	its	rapidly	changing	features	and
incredible	uptake	it	has	allowed	me	to	consult	in	a	variety	of	different	and
challenging	solutions.
I	was	awarded	the	Microsoft	MVP	award	for	Power	BI	since	2017.
I	have	spoken	at	the	Microsoft	Business	Applications	Summit	(Seattle	&
Atlanta),	Power	BI	World	Tour	&	SQL	Saturdays.
Proven	competencies	in	the	implementation	of	data	analytic	solutions	from	the
ground	up.	Which	included	developing	data	warehouses,	SSAS	Cubes,	and	most
recently	Power	BI	solutions	for	customers	in	various	business	sectors.
I	have	worked	within	teams,	managed	teams	as	well	as	worked	alone	on	various
successful	data	analytics	projects.

Chapter	17:	Incremental	refresh
	
Author:	Michael	Johnson
Abstract:	When	it	comes	to	managing	loading	data,	Power	BI	does	not	provide
many	options	as	to	how	data	is	loaded	into	the	model,	and	this	causes	issues	in
larger	models	where	full	refreshed	as	time-consuming.	Incremental	refresh	offers
a	simplified	approach	to	loading	only	the	most	recent	changes	to	the	data	making
data	loads	faster	and	more	reliable	while	consuming	fewer	resources.	In	this
chapter,	we	cover	how	to	set	up	and	maintain	Incremental-refresh	for	your	power
BI	model.

Introduction
Working	with	large	volumes	of	data	within	Power	BI	can	often	be	very	time
consuming,	especially	when	it	comes	to	refreshing	datasets	and	it	is	not
uncommon	for	large	datasets	refreshes	to	take	several	hours.	In	a	world	that
demands	near	real-time	insights,	these	loads	have	become	an	impediment	to	the
business.
Incremental	Refresh	was	added	to	the	Power	BI	service	to	reduce	the	time	taken
to	refresh	a	dataset	by	merely	refreshing	only	the	most	recent	data	and	not	the
entire	dataset.	By	reducing	the	amount	of	data	that	needs	to	be	re-loaded,
refreshes	take	not	only	less	time	but	also	consume	fewer	resources	doing	it.

What	is	incremental	refresh	and	how	does	it	work
Incremental	Refresh	implements	partitioning	where	a	partition	is	a	small	part	of
a	larger	table,	each	partition	is	assigned	a	range	of	values	usually	by	the	date	that
gets	stored	in	that	partition.	The	power	of	partitioning	is	that	the	Power	BI
service	can	refresh	a	single	partition	or	even	a	group	of	partitions	instead	of	the
entire	table	as	we	see	in	Power	BI	service	currently.	It	is	generally	true	that	our
older	data	never	changes	such	as	last	year`s	sales	and	then	new	data	is
continuously	changing,	such	as	today`s	sales.	The	ability	to	refresh	only	today`s
sales	and	not	last	year’s	sales	results	in	a	lot	of	saving	of	time	and	effort.	Thus,
benefits	of	this	incremental	refresh	are:
Faster	Refreshes:

As	each	partition	contains	only	a	small	percentage	of	the	total	rows,	we
reduce	the	number	of	rows	that	need	to	be	imported.

Fewer	resource	required
As	only	a	small	portion	of	the	data	is	loaded	the	number	of	resources
required	from	both	the	source	system	and	the	power	BI	service	is	reduced
including	locks	on	source	systems,	CPU	and	network	resources.

More	reliable	processes
As	Power	BI	datasets	often	use	core	business	systems	as	their	source,	long
running	queries	may	affect	their	performance.	By	reducing	the	number	of
rows,	we	improve	not	only	the	speed	of	the	load	but	also	reduce	the	risk	of
query	timeouts	and	other	network	related	issues.			

Requirements
Before	setting	up	Incremental	Refresh	there	are	a	few	requirements	that	must	be
met
	

Premium	Workspace
Incremental	refresh	is	currently	only	available	to	datasets	published	to	a
premium	workspace,	while	the	Incremental	Refresh	policy	is	set	up	in	Power	BI
Desktop	the	feature	is	not	activated	until	the	report	is	published	to	a	premium
Workspace.	The	report	can	also	not	be	published	to	a	non-premium	workspace
such	as	‘My	Workspace’	once	it	has	an	Incremental	Refresh	policy	applied.

Query	Folding	data	source
While	not	absolutely	necessary,	it	is	recommended	that	Incremental	Refresh	only
be	set	up	on	a	data-sources	that	support	query	folding.	Query	folding	is	the
ability	of	Power	Query	to	adapt	some	of	the	transformations	that	are	usually
done	in	the	mashup	engine	and	push	then	down	to	the	source	system.	Many
sources,	such	as	text	files	and	websites,	are	unable	to	do	this.	However,	data
sources	such	as	relational	database	and	some	OData	sources	can	do	this.

Transaction	dates
For	Incremental	refresh	to	work,	it	requires	a	date	of	transaction	(such	as	a	sales
or	event	date).	This	record	should	also	be	non-volatile	meaning	that	details	of
this	event	should	not	change	after	a	period	of	time	as	these	changes	will	not	be
loaded	if	they	occur	outside	of	the	refresh	window.			Another	requirement	for
this	date	column	is	that	there	are	no	future	dated	transactions	as	these	will	not	be
loaded	as	part	of	the	incremental	refresh.

Enabled	Incremental	Refresh	feature
At	the	time	of	writing	Incremental	refresh	is	still	a	preview	feature.	Therefore,
you	need	to	enable	it	in	the	Power	BI	preview	features	tab	which	can	be	found	at
File	??	Option	and	Settings	??	Options	??	Preview	features	

Figure	17-01:	Enabling	the	Incremental	Refresh	preview	feature
Once	these	requirements	have	been	met,	we	can	setup	incremental	refresh.

Setting	up	Incremental	refresh
Setting	up	incremental	refresh	can	be	done	in	4	easy	steps
●								Step	1:	Create	range	parameters
●								Step	2:	Filter	dataset	using	range	parameters
●								Step	3:	Configure	incremental	refresh	in	Power	BI	desktop
●								Step	4:	Deploy	and	publish	report

Step	1	–	Create	range	parameters
For	Incremental	Refresh	to	be	configured	first	need	to	create	two	specific
parameters	within	the	report	called	RangeStart	and	RangeEnd,	these
parameters	must	be	defined	as	the	Date\Time	data	type.	The	two	parameters	are
used	to	determine	the	upper	and	lower	boundary	values	of	each	partition,
RangeStart	being	the	first	date	in	the	partition	and	RangeEnd	being	the	first
date	of	next	partition	i.e.	Up	to	but	not	including	the	RangeEnd.	The	selection
of	dates	for	these	parameters	is	not	critical	and	dates	should	be	chosen	to	support
the	report	development	process	such	as	a	range	of	13	months.
	

Figure	17-02:	Adding	the	new	RangeStart	and	RangeEnd	parameters	to
report

Step	2:	Filter	dataset	using	parameters
Once	the	two	required	parameters	have	been	created,	the	next	step	is	to	filter	the
large	table	using	those	parameters	by	limiting	the	range	of	data	to	only	dates
between	the	two	values.	Once	published	Power	BI	dynamically	replaces	these
original	parameter	values	with	new	upper	and	lower	bound	values	for	each
partition.
The	date	filter	can	easily	be	applied	by	using	the	between	operator	to	the	date

column.	
Figure	17-03:	Adding	a	filter	to	the	date	column
Then	the	filter	needs	to	be	configured.	Note:	in	order	to	avoid	missing	or
duplicated	records	it	is	important	that	the	‘is	after	or	equal	to’	is	selected	for	the
first	filter	step.	The	next	step	is	to	assign	this	the	parameter	value	by	selecting
the	parameter	option	then	selecting	the	RangeStart	parameter,	which	is	in	the
list	of	available	parameters.	The	second	filter	is	applied	in	the	same	way	this
time	using	the	‘is	Before’	option	and	the	RangeEnd	value.
	

Figure	17-04:	Assigning	parameters	to	table	filter
Alternatively,	the	filter	can	also	be	added	by	using	M,	The	M	code	for	this
operation	would	look	something	like	this

=		Table.SelectRows(#"Changed	Type",	each	[Invoice	Date
Key]	>=	RangeStart	and	[Invoice	Date	Key]	<	RangeEnd)

	

Step	3:	Configure	incremental	refresh	in	Power	BI	desktop
Once	the	table	has	been	correctly	filtered	using	Power	Query	the	next	step	is	to
set	up	the	Incremental	Refresh	policy.	This	is	done	in	the	Power	BI	editor	(You
should	select	Close	and	Apply	from	the	Power	Query	editor	to	return).	The
incremental	policy	can	be	found	on	the	context	menu	(Right	click	on	the	table
name)	for	the	for	the	table.

Figure	17-05:	Adding	Incremental	refresh	policy
Before	the	Incremental	Refresh	policy	is	set	up,	Power	BI	validates	that	the	first
two	steps	have	been	completed	correctly,	if	there	are	any	issues	an	error	message
such	as	the	one	below	is	displayed,	this	will	need	to	be	corrected	before
proceeding.
	

Figure	17-06:	Incremental	refresh	unable	to	be	setup	due	to	error
If	all	the	prior	step	were	successfully	completed,	then	the	option	to	enable
Incremental	Refresh	is	provided	by	toggling	the	incremental	tab	alongside
the	name	of	the	table	that	you	want	to	configure	incremental	refresh.

	
	

Figure	17-07:	Configuring	the	Incremental	refresh	policy
With	the	incremental	refresh	option	enabled	there	are	4	configurations	that	need
to	be	set
Store	rows	where	“Date	column”	is	in	the	last:		The	first	configuration	defines
how	much	data	must	be	kept	in	the	model.	In	the	case	of	the	policy	above	at	least
2	years	of	data	are	stored.
Refresh	rows	where	the	column	“Date	column”	is	in	the	last:	This
configuration	option	sets	the	number	of	periods	that	will	be	loaded	each	time	the

model	is	refreshed.	A	balance	must	be	found	between	catching	all	rows	that	have
changed,	and	data	volume,	a	range	too	big	takes	longer	to	load,	and	a	range	to
small	may	miss	late	arriving	data.
Detect	data	changes:			Power	BI	can	also	be	configured	to	only	load	partitions
within	the	process	window	that	has	changed	data	changes.	This	is	only	possible
if	the	data	has	a	last	changed	date	column,	also	note	it	that	important	to	note	that
the	timestamp	column	in	SQL	server	does	not	work	for	this	purpose.
Only	refresh	completed	Days:	The	final	configuration	option	is	only	to	import
completed	periods;	this	is	useful	for	reports	then	do	not	support	partial	periods.

Step	4:	Deploy	and	publish	report
Once	the	Incremental	Refresh	policy	has	been	set	up	the	next	step	is	to	publish
the	report.	There	are	no	particular	actions	required	during	this	step;	however,	it
should	be	noted	that	reports	with	an	Incremental	Refresh	policy	can	only	be
published	to	a	workspace	backed	by	a	premium	capacity.	There	is	little	risk	of
saving	to	a	non-premium	workspace	as	the	publish	dialogue	only	lists	Premium
workspaces	with	non-premium	workspaces	lowlighted.

Figure	17-08:	Publishing	report	with	Incremental	Refresh	to	a	premium
workspace
After	the	report	has	been	published,	you	need	to	refresh	the	dataset	as	it	still
contains	only	the	data	from	our	filtering	applied	in	the	Power	BI	desktop,	the
Incremental	Refresh	policy	has	not	yet	been	applied.

During	the	first	data	refresh	Power	BI	removes	the	single	partition	of	data
created	in	Power	BI	desktop	and	replace	it	with	a	dynamic	number	of	partitions
required	to	support	the	Incremental	Refresh	policy.	The	first	refresh	takes
approximately	the	same	amount	of	time	as	a	regular	full	load	did	as	al	the
partitions	need	to	be	loaded.	It	is	only	on	subsequent	refreshes	that	we	see	the
load	time	improve

Figure	17-09:	Difference	in	processing	times	of	first	and	second	refreshes.
Note:	That	first	refresh	took	approximately	14	minutes	while	the	second	refresh
took	only	23	seconds
This	is	all	that	needs	to	be	configured	when	setting	up	Incremental	Refresh;	the
Power	BI	service	manages	all	subsequent	administration	tasks	such	as	creating
new,	merging	existing	and	deleting	old	partitions.	There	is	no	further	action
required	by	the	report	creator.	The	remainder	of	this	chapter	explores	the	inner
working	of	how	Incremental	Refresh	is	implemented.

Looking	under	the	covers
Under	the	hood	of	Power	BI	lies	Analysis	Services	and	more	specifically	SSAS
Tabular,	which	is	the	engine	that	is	responsible	for	both	storing	data	and
executing	queries	against	that	data.	For	years	Business	Intelligence	practitioners
have	used	partitioning	to	manage	data	loads	into	and	sometimes	out	of	the
model.	Creating	an	effective	partitioning	strategy	was	time-consuming	and
occasionally	error-prone	process.	In	the	Incremental	Refresh,	the	Power	BI
implementation	of	partitioning	all	the	work	of	creating,	loading,	merging	and
deleting	partitions	is	handled	for	you	keeping	in	line	with	the	easy	to	start	self-
service	goals	of	Power	BI.
However,	what	do	partitions	look	like	under	the	hood,	in	this	section	we	look	at
how	Power	BI	implements	its	partitioning	strategy.	While	it	is	possible	to	modify
the	policy	to	get	different	behaviours	we	will	user	the	Incremental	Refresh
policy	created	in	Figure	25.7	where	the	data	retention	period	is	set	to	2	years,
data	refresh	is	set	to	10	days	and	the	other	to	option	are	not	enabled.
To	achieve	this	Power	BI	will	create	several	partitions.	Conceptually	the
simplest	would	be	to	create	one	partition	per	day.	However,	it	becomes
inefficient	to	have	many	smaller	partitions.	Power	BI	begins	by	creating	daily
partitions,	when	there	are	more	than	a	calendar	months’	worth	of	daily	partitions
and	those	daily	partitions	are	outside	of	the	10-day	refresh	window	then	those
daily	partitions	will	be	merged	into	a	single	monthly	partition.	When	there	are
three	consecutive	monthly	partitions	those	are	merged	into	a	quarterly	partition,
which	will	then	be	merged	into	an	annual	or	year	partition	when	there	are	4	of
them	all	in	the	same	year,	that	was	certainly	a	mouthful	so	the	graphic	below
should	make	this	easier	to	understand.

Figure	17-10:	Conceptual	view	of	the	partitions	created	by	incremental
refresh
Assuming	the	date	was	12	June	2019	then	there	would	be	17	partitions	(2	Year,	1

Quarter,	2	Month	and	12	Day)	this	can	be	verified	by	using	the	new	XMLA
endpoint	available	in	Power	BI	premium,	XMLA	is	another	set	of	tools	in
Analysis	Services	that	allow	us	to	query	and	eventually	modify	(on	roadmap	but
not	available)	the	structure	of	the	Power	BI	dataset.	The	Path	for	the	endpoint	is
found	in	the	Workspace	setting
	

Figure	17-11:	Physical	view	of	partitions
Then	using	a	tool	such	and	SQL	Management	studio,	a	connection	to	the	Power
BI	datasets	can	be	made.

Figure	17-12:	Connecting	to	Power	BI	datasets	using	the	XMLA	endpoints
When	we	query	the	partitions	in	the	model	we	get,	as	we	expected	17	partitions
back

Figure	17-13:	Physical	view	of	partitions
	
In	this	view,	we	see	the	17	partitions	we	expected	(2	Year,	1	Quarter,	2	Month
and	12	Day)	we	also	see	some	additional	data	such	as	the	number	of	rows	in
each	partition.	The	next	thing	to	look	at	is	the	definition	for	the	partitions
themselves,	we	briefly	mentioned	XMLA	however	Power	BI	and	SSAS	Tabular
(as	of	compatibility	level	1200)	now	use	Tabular	Object	Model	(TOM),	which	is
a	JSON	based	format	for	representing	the	metadata	of	the	data	set.	Scripting	out
the	definition	for	the	partition	named	‘2019Q205’	which	is	May	2019	we	get.
	

Figure	17-14:	TOM	for	the	May	2019	partition
	
Here	we	can	see	several	useful	bits	of	information	starting	with	the	names	of	the
database,	table	and	partition.	We	also	see	more	detailed	information	about	the
partition	itself
Type:	This	tells	us	what	the	Incremental	refresh	policy	is	being	used,	only	Policy
Range	is	available	at	this	time,	other	options	include	M	for	tables	that	are
derived	from	Power	Query	and	Calculated	for	calculated	tables	created	with
DAX.
Start	&	End:	The	values	for	start	and	end	correspond	the	first	(Included)	and
last	(not	included)	values	in	the	partition,	these	map	to	the	StartRange	and
EndRange	parameters	that	we	created	in	Step	1.
Granularity:	This	denotes	the	partition	type	and	can	be	year,	quarter,	month	or
day.
The	final	task	that	we	will	look	at	is	to	examine	the	query	that	is	sent	to	the	data
source,	to	get	an	idea	of	what	the	query	will	look	like	we	can	use	the	View
Native	Query	option	in	the	applied	steps	in	Power	Query,	this	shows	us	what	the
effect	of	query	folding	will	look	like

Figure	17-15:	Query	generated	by	power	Query	after	Query	folding
	
An	alternative	approach	or	one	to	validate	this	approach	is	to	use	extended
events,	or	SQL	profiler	capture	all	incoming	queries,	below	is	the	query
generated.

Figure	17-16:	Query	generated	by	power	Query	after	Query	folding
Looking	at	the	T-SQL	generated	in	the	statement	above	it	can	be	seen	how	the
power	query	have	used	query	folding	to	pass	the	filter	expression	to	SQL	server
where	it	is	more	effectively	implemented,	and	the	partitions	have	been	used	to
dynamically	replaced	the	date	values	in	each	query	to	only	return	the	data
required.

Limitations	and	things	to	look	out	for
While	Incremental	Refresh	has	made	this	process	amazingly	simple	there	are	a
few	things	to	be	aware	of.
Incremental	refresh	does	not	support	future	dated	transactions	and	there	does	not
seem	to	be	an	option	for	this.	This	is	usually	not	a	problem	for	most	systems	but
if	you	do	have	future	dated	transactions	then	this	may	be	an	issue.
There	does	not	seem	to	be	a	way	to	force	a	full	load	after	the	initial	publish	load,
e.g.	if	we	wanted	to	reload	as	a	once	off	exercise	possible	due	to	some	correction
in	the	business	process,	this	is	not	currently	possible,	you	will	need	to	re-import
the	PIDB	file	to	the	service	(if	changes	have	been	made	to	the	report	through	the
online	report	editor	then	these	changes	will	be	lost).	Remember	that	the	PIBX
cannot	be	downloaded	to	the	desktop	once	it	has	been	published	as	the	desktop
does	not	know	how	to	handle	partitions.
If	you	are	using	a	rational	database	as	a	source,	make	sure	that	you	have	indexes
that	support	incremental	refresh,	the	optimal	would	be	to	have	the	partition	date
used	as	the	cluster	index.
	

Summary
Incremental	Refresh	has	been	well	implemented	and	will	meet	the	needs	of	most
Power	BI	users,	and	its	use	should	be	encouraged	in	all	reports	that	import	a
large	number	of	rows.	The	limitation	of	requiring	a	premium	workspace	impedes
this,	and	we	would	love	to	see	this	removed	as	more	efficient	report	loads	are
good	for	both	the	report	creator	and	the	Power	BI	service	as	a	whole	
To	learn	more	about	incremental	refresh	you	can	view	the	official	Microsoft
documentation	at	https://docs.microsoft.com/en-us/power-bi/service-premium-
incremental-refresh
	

https://docs.microsoft.com/en-us/power-bi/service-premium-incremental-refresh

About	the	Author

Michael	Johnson	is	a	Business	Intelligence	architect	and	Microsoft	data	platform
MVP	living	in	Johannesburg,	South	Africa.	Michael	has	been	working	with	data
for	the	last	15	years	and	has	run	the	local	SQL	Server	User	Group	and	SQL
Saturday	conference	event	for	the	last	few	years.
He	enjoys	showing	people	new	tools	and	technologies	that	allow	them	to	work
more	effectively	with	their	data.

Chapter	18:	Report	Server	Administration
	
Author:	Shree	P	Khanal	
This	Chapter	will	 help	 to	 bridge	 the	 gap	 of	 understandings	 required	 for	 those
organizations	 that	 are	not	using	cloud	 infrastructure	 for	Power	BI	 reporting.	A
non-cloud	Power	BI	architecture	can	be	planned	using	a	Power	BI	feature	called
Power	BI	Report	Server.	Though	this	feature	gives	an	added	flexibility,	it	has	to
manage	and	administer	a	new	service.	

Power	BI	Report	Server
Today,	Power	BI	is	much	more	than	a	cloud-based	reporting	service.	Along	with
the	 enhancement	 in	 its	 services	 and	 the	 tremendous	 increase	 of	 users,	 many
businesses	now	demand	of	having	data	and	reporting	solutions	 in	on-premises.
Therefore,	 Microsoft	 has	 introduced	 an	 option	 to	 fully	 deploy	 Power	 BI	 on-
premises.	This	version	of	the	Power	BI	on-premise	is	called	the	Power	BI	Report
Server.	
Power	 BI	 is	 much	 more	 than	 a	 cloud-based	 reporting	 technology.	 	 With	 the
increasing	demand	of	having	data	and	reporting	solutions	on-premises	by	many
businesses,	 Microsoft	 introduced	 an	 option	 to	 fully	 deploy	 Power	 BI	 on-
premises.	The	version	of	Power	BI	on-premise	is	called	Power	BI	Report	Server.
In	 this	 chapter,	 you	 will	 learn	 everything	 you	 need	 to	 know	 about	 Power	 BI
Report	 Server,	 a	 complete	 on-premise	 solution.	 Including,	 how	 to	 install	 and
configure	it	as	well	as	will	highlight	the	pros	and	cons	as	we	get	along	it.	At	the
end	of	this	chapter,	you	will	be	able	to	decide	whether	Power	BI	on-premise	is
the	 right	choice	 for	you	or	not	and	how	can	you	 implement	and	configure	 this
feature.
What	Is	Power	BI	Report	Server?
Power	BI	Report	Server	is	an	edition	of	SQL	Server	Reporting	Services	that	can
host	Power	BI	reports.	To	install	the	Power	BI	Report	Server,	you	don’t	need	to
have	 a	 SQL	Server	 installation	media;	 it	 comes	with	 its	 setup	 files.	 Power	BI
Report	 Server	 can	 host	 Power	 BI	 reports	 as	 well	 as	 Reporting	 Services	 like
SSRS	Reports.
Along	 with	 Power	 BI	 Report	 Server,	 there	 will	 be	 an	 instance	 of	 Power	 BI
Desktop	installation.	The	Power	BI	Desktop	edition	which	comes	along	with	the
report	server	should	be	used	to	create	the	Power	BI	reports	else	reports	cannot	be
hosted	on	the	report	server.	Power	BI	Report	Server	also	regularly	gets	updates
like	Power	BI	Desktop	giving	an	essence	as	using	a	Power	BI	desktop	vversion		

Power	BI	Report	Server	Can	be	installed	on	the	following	Microsoft
operating	systems
	
Server	-	Operating	System:	Windows	Server	2012	or	higher	versions
Workstation	-	Operating	System:	Windows	8	or	higher	versions

Web	browser:
Microsoft	Edge,
Microsoft	Internet	Explorer	11,
Google	Chrome,
Mozilla	Firefox

	
Note:	The	Power	BI	Report	Server	installation	is	only	supported	on	64-bit	OS
and	requires	.Net	framework	4.6	installed	in	it.
For	more	refer	to	this	link:
Hardware	and	software	requirements	for	installing	Power	BI	Report	Server:
https://docs.microsoft.com/en-us/power-bi/report-server/system-requirements

https://docs.microsoft.com/en-us/power-bi/report-server/system-requirements

Download	Power	BI	Report	Server	
Before	 you	 begin	 installation,	 download	 the	 latest	 edition	 of	 Power	BI	Report
Server	from	following	link:
https://powerbi.microsoft.com/en-us/report-server/
	
Download	following	items	on	the	server	as	well	as	client/desktop	respectively.

Power	BI	Report	Server	and
Power	BI	Desktop	Report	Server	edition	(available	in	X86	and	X64
versions).

https://powerbi.microsoft.com/en-us/report-server/

Installing	Power	BI	Report	Server
Installation	of	Power	BI	Report	Server	is	simple.	The	user	just	needs	to	run	the
setup	file	and	follow	the	instructions.	Figure	18-01	shows	the	very	first	screen	of
the	installation	process.

Figure	18-01:	Installing	Power	BI	Report	Server
You	can	choose	between	the	evaluation	edition	(180	days)	and	the	licensed
version	of	Power	BI	Report	Server.	Besides,	the	development	edition	is	also
available	free	of	cost.
	

Figure	18-02:		Choose	the	edition

Accept	the	license	terms	before	moving	to	the	next	screen.	

Figure	18-03:		License	terms	for	BI	Report	Server
Earlier,	it	was	mentioned	that	you	don’t	need	to	have	SQL	Server	installed	to	get
the	 Power	 BI	 Report	 Server.	 However,	 the	 SQL	 Server	 database	 engine	 is	 a

prerequisite	for	the	report	server	to	run.	If	you	do	not	already	have	SQL	Server
installed,	 the	 Report	 Server	 setup	 process	 will	 install	 the	 database	 engine	 for
you,	as	shown	in	Figure	18-04.	

Figure	18-04:	SQL	Server	database	engine	is	required	for	the	Power	BI
Report	Server
Follow	the	on-screen	instructions	for	the	next	steps.	
Finally,	 restart	 the	 Report	 Server	 when	 the	 installation	 is	 successful.	 Upon
restart,	you	will	need	to	configure	it.	

Configuring	the	Power	BI	Report	Server
After	the	installation	is	successful,	open	the	configuration	section	by	clicking	on
“Configure	Report	Server”	button	as	 shown	 in	Figure	18-05.	The	 instructions
may	ask	you	to	restart	 the	server.	Once	you	restart,	access	 the	Report	Server
Configuration	Manager	from	Start	|	Microsoft	Power	BI	Report	Server.

Figure	18-05:	Configure	report	server

In	the	“Connect	to	a	Power	BI	report	server	instance”	dialogue	box,	make	sure
that	your	 local	 report	server	 instance	(for	example	PBIR)	 is	selected	and	click
Connect.	

	

Figure	18-06:	Report	Server	Configuration	Manager	connection
To	setup	a	service	account	for	the	Report	Server,	access	the	‘Service	Account’	tab.

You	can	leave	it	to	default	or	setup	a	new	account.

Web	Setup
Report	Server	needs	Web	setup	for	it	to	work.	There	are	two	URLs	that	you	must

configure.	 The	 first	 is	 for	 the	 web	 service	 and	 the	 other	 is	 for	 the	 web
portal.	These	are	accessed	from	their	own	tabs.

Web	Service	Setup:
To	configure	 the	web	service,	click	on	 the	Web	Service	URL	 ()	 tab,	make
sure	that	the	Virtual	Directory	is	set	to	ReportServer	by	default	and	the	TCP
Port	 is	 set	 to	80.	Alternatively,	 you	 can	 use	 your	Report	 Server	Name	 and	 a
different	port	number.
	

	

Figure	18-07:	Web	Service	URL	Configuration

	
Click	 on	 ‘Apply’	 after	 you	 have	 provided	 the	 necessary	 details.	 You	 will	 see
success	messages	and	a	URL	that	you	can	click	to	open	the	report	server’s	web
service.	For	example,	notice	the	highlighted	URL	in	Figure	18-08.

	

Figure	18-08:	Web	Service	URL	configuration
When	you	click	on	the	URL,	you	should	be	able	to	open	the	web	service’s	page
without	any	issues.	
Figure	18-9	shows	an	example	of	what	that	service	page	will	look	like.
	

Figure	18-09:	Web	Service	URL	browsed	in	a	web	browser
In	the	Report	Server	page,	initially,	you	will	only	see	the	version	of	the	Report
Server	 along	with	 its	 name.	However,	 later	when	 you	 upload	Power	BI	 files,
you’ll	be	able	to	see	the	contents.
Database	Setup:
On	the	Database	tab(),	make	sure	that	the	SQL	Server	Name	points	to	your
local	SQL	Server	instance	&	Report	Server	Mode	is	set	to	Native.

Figure	18-10:	Database	Configuration

To	setup,	follow	these	steps:	
Click	 Create	 Database	 to	 open	 the	 Report	 Server	 Database	 Configuration
Wizard.	
Later,	you	can	update	the	database	setting	by	clicking	on	the	Change	Database
button.	On	the	screen	that	follows,	provide	new	configuration	values	for	Server
Name,	Authentication	Type,	Username	and	Password	as	shown	in	Figure	18-11.	

Figure	18-11:	Database	Server	Configuration
In	the	Database	page,	type	ReportServer	as	the	default	Database	Name,	select
Native	Mode	for	the	Report	Server	Mode,	then	click	Next	to	continue.	

Figure	18-12:	Database	Configuration

In	 the	 Credentials	 page,	 select	 Service	 Credentials	 for	 the	 Authentication
Type,	then	Click	Next	and	finally	Finish	to	complete	the	wizard.	

Figure	18-13:	Database	Configuration	steps
	
Web	Portal	Setup

To	set	up	the	web	portal,	click	on	Web	Portal	URL	tab.	You	can	then	configure
the	 service	 as	 needed	 using	 the	 interface	 in	 Figure	 18-14.	When	 you’re	 done,
click	on	Apply.	If	the	configuration	process	completes	successfully,	you	will	see
a	 success	message	 as	 shown	 in	 Figure	 18-15.	You	 can	 then	 click	 on	 the	Web
Portal	URL	to	open	it	in	a	browser	window,	as	in	Figure	18-14.	
	
Figure	18-14:	Web	Portal	URL	configuration

	

Figure	18-15:	Web	portal	created
The	web	portal	should	show	you	the	environment	of	Power	BI	Report	Server’s
admin	view.

	

Figure	18-16:		Power	BI	Report	Server	Web	Portal

When	 installation	 and	 configuration	 of	 the	 Power	 BI	 Report	 Server	 are
completed,	you	can	close	the	Report	Server	Configuration	Manager.
	
Installing	Power	BI	Desktop	Report	Server
Power	BI	reports	are	developed	with	a	specific	tool	called	Power	BI	Desktop
Report	Server.
Download	 it	 from	 https://www.microsoft.com/en-us/download/details.aspx?
id=56722	then	Start	the	installation	wizard	and	complete	the	installation.
	
	

https://www.microsoft.com/en-us/download/details.aspx?id=56722

Figure	18-17:	Installing	Power	BI	Desktop	for	the	Report	Server

	
After	 a	 successful	 installation,	 you	 can	 open	 the	 Power	 BI	 Desktop	 Report
Server	which	appears	as	 in	Figure	18-18.	This	 interface	looks	similar	 to	 the
regular	Power	BI	Desktop	interface.
	
Figure	18-18:	Power	BI	Desktop	Report	Server

Developing	Reports	with	Power	BI	Report	Server
You	can	create	a	report	in	the	Power	BI	Desktop	Report	Server	by	following
the	same	steps	as	you	would	follow	when	creating	a	report	in	normal	Power
BI	Desktop.	You	 can	 even	 open	 a	 report	 developed	with	 normal	 Power	BI
Desktop	in	the	Power	BI	Desktop	Report	Server.	Figure	18-19	shows	a	report
in	Power	BI	Desktop	Report	Server.

Figure	18-19:	A	report	from	Power	BI	Desktop	opened	in	Power	BI	Report
Server

	
To	deploy	reports,	you	need	to	connect	 to	a	report	server	as	shown	in	Figure
18-20.

Figure	18-20:	Connecting	to	Power	BI	Report	Server	from	Power	BI
Desktop

	
Then,	enter	the	Web	Portal	URL.	Use	the	same	URL	that	you	had	used	when
configuring	 the	 Report	 Server.	 Figure	 18-21	 shows	 such	 an	 address	 at	 the
bottom	of	the	page.

Figure	18-21:	Report	Server	URL	is	needed	to	connect	to	the	Power	BI
Report	Server
	
After	successful	deployment,	you	will	see	a	message	with	a	link	to	the	report.
Figure	18-22	shows	an	example.

Figure	18-22:	Publishing	to	the	Power	BI	Report	Server
Figure	18-23	shows	an	example	of	a	report	hosted	on	Power	BI	Report	Server.
This	report	is	fully	interactive	and	is	similar	to	the	report	hosted	in	Microsoft’s
Power	BI	web	service.	

Figure	18-23:	Reports	are	fully	interactive	in	the	Power	BI	Report	Server

	
Figure	 18-24	 shows	 another	way	 to	 publish	 a	 Power	BI	 report	 to	 the	 report
server.
You	can	do	so	by	choosing	the	Upload	option	from	the	web	portal’s	toolbar.
	

Figure	18-24:	Uploading	Power	BI	reports	to	the	Report	Server

Managing	Datasets	on	the	Report	Server
A	 Power	 BI	 report	 published	 to	 the	 report	 server	 can	 be	 configured	 for
scheduled	data	refresh.	To	configure,	open	the	report	server	web	portal,	and
click	 on	 the	 more	 options	 of	 the	 Power	 BI	 report.	 Figure	 18-25	 shows	 an
example.
	
	

	

Figure	18-25:	Manage	the	dataset	of	the	report	on	the	Report	Server

Click	on	‘Manage’	for	data	source	configuration,	connection	to	the	data	source,
and	to	schedule	a	data	refresh	as	required.	Figure	18-26	shows	the	Manage	tab
for	a	report	named	Daily	deposit.	

Figure	18-26:	Dataset	properties	configuration	in	Power	BI	Report	Server

Schedule	Refresh	Requirement
If	your	report	is	sourced	from	a	file,	then	you	may	need	to	schedule	the	report	to
refresh.	At	first,	you	need	 to	specify	file	 location	from	a	network,	as	shown	in
the	Figure	18-27.	

Figure	18-27:	Scheduled	data	refresh	is	only	available	for	files	with	a	shared
network	drive	path

If	 you	use	 a	network	 shared	path	 to	 access	 the	 source	 file,	 you	 can	 set	 up	 the
connection	to	the	file	as	shown	in	Figure	18-28.	

Figure	18-28:	Setting	up	credentials	for	the	data	source	connection	and
testing	the	connection
Make	sure	to	save	after	this	step.	Otherwise,	you	won’t	be	able	to	schedule	the
refresh	process.	Then	click	on	the	Scheduled	refresh	option	on	the	left	sidebar	to
create	a	refresh	plan.	

Figure	18-29:	Creating	a	scheduled	refresh	plan	for	the	dataset

The	scheduled	refresh	configuration	of	 the	report	server	has	more	options	 than
the	 Power	 BI	 Service.	 You	 can	 choose	 to	 schedule	 hourly,	 daily,	 weekly,
monthly,	or	any	custom	period.	Additionally,	you	can	choose	 the	start	and	end
dates	and	many	other	configurations.	Figure	18-30	shows	some	of	the	scheduling
options	that	are	available	to	you.	

Figure	18-30:	More	detailed	scheduling	options	are	available	with	Power
BI	Report	Server

	
In	the	Scheduled	Refresh	section,	you	can	see	a	list	of	configurations	along	with
their	status.
Figure	18-31	shows	such	a	list,	with	just	one	entry	named	Daily	Refresh.	

Figure	18-31:	Monitoring	scheduled	refresh	plans

Resources/	References
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-use-
directquery/				
https://docs.microsoft.com/en-us/power-bi/report-server/admin-handbook-
overview
https://radacad.com/power-bi-report-server-power-bi-in-on-premises-world

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-use-directquery/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-use-directquery/
https://docs.microsoft.com/en-us/power-bi/report-server/admin-handbook-overview
https://radacad.com/power-bi-report-server-power-bi-in-on-premises-world

Summary
The	Power	BI	Report	Server	is	an	on-premises	reporting	solution	covering	all
aspects	of	report	development,	deployment	and	hosting.	With	the	Power	BI
Report	Server,	interactive	reports	are	now	available	on	on-premises	servers,	not
just	on	Power	BI	service.		
Power	BI	Report	Server	needs	a	specific	licensing,	which	comes	either	with	the
Power	BI	Premium	or	through	the	SQL	Server	Enterprise	License	with	Software
Assurance.	
Power	BI	Report	Server	is	a	viable	option	for	companies	who	are	not	yet	ready
to	move	to	cloud-based	technologies.	

About	the	Author

					 	
Shree	Khanal	is	a	Database	Architect,	Speaker	and	Trainer	having	15+	years	of
professional	experience	in	database	solution	development	and	optimization.	Mr.
Khanal	is	a	Data	Platform	MVP	&	Microsoft	Certified	Database	Professional
since	2000	to	till	date.	Starting	with	SQL	Server	7,	he	has	been	working	with	all
the	version	of	SQL	Server	up	to	2017	in	the	production	environment.	In	the
context	of	OLAP	cube	development,	he	started	working	on	it	from	SQL	Server
2000	to	latest	SSAS	2017.	He	has	worked	several	years	providing	SQL	BI
solutions	to	various	enterprise	clients	most	of	them	from	the	BI	sector.	Being	a
founder,	he	has	been	leading	the	Himalayan	SQL	Server	User	Group
(www.sqlpassnepal.org)	based	in	Kathmandu,	Nepal	since	2010.	

Part	VII:	Architecture

Chapter	19:	Governance
	
Author:	Ásgeir	Gunnarsson
The	Business	Dictionary	defines	governance	as	“Establishment	of	policies,	and
continuous	monitoring	of	their	proper	implementation,	by	the	members	of	the
governing	body	of	an	organization.”	[1]	With	this	in	mind,	this	chapter,	in	the
context	of	Power	BI,	is	going	to	focus	on	4	pillars	of	governance,	processes,
training,	monitoring	and	roles.

Introduction
Power	BI,	like	many	other	self-service	BI	tools	suffers	for	its	dual	purpose	of
being	self-service	but	also	used	as	an	enterprise	BI	tool.	Power	BI	started	out	as
a	pure	self-service	tool	but	has	increasingly	been	moving	to	be	more	of	an
enterprise	tool	and	can	rightly	be	called	a	hybrid	BI	tool.	No	matter	if	you	use
Power	BI	as	a	self-service	tool,	as	an	enterprise	BI	tool	or	both,	it’s	important	to
include	governance	into	your	implementation.	Far	too	many	organizations	start
using	Power	BI	without	thinking	about	governance	and	then	have	the	problem	of
trying	to	get	their	users	to	stop	doing	things	as	they	are	used	to	and	to	start	using
process	they	are	not	used	to	and	often	feel	will	hinder	their	progress.	No	matter
if	your	organization	is	starting	its	Power	BI	journey	or	has	already	ventured	in
the	Power	BI	“Wild	West”,	governance	is	an	important	and	necessary	part	of	any
Power	BI	implementation.
This	chapter	will	focus	on	the	4	pillars	of	a	good	governance	strategy:

Figure	19-01:	The	Four	Pillars	of	Power	BI	Governance	Strategy
One	of	the	following	sections	is	devoted	to	each	pillar.

Process
It´s	important	to	have	a	formal	governance	process	in	place.	This	process	is	often
broken	down	into	smaller	processes	and	usually	contains	processes	for
Development,	Publishing,	Sharing,	Security,	Naming	standards,	Support	and
Tenant	Settings.	In	this	section	we	will	see	examples	of	each	process	and	how
they	can	be	tied	together	and	exposed	to	end	users.
At	the	heart	of	a	governance	plan	are	processes.	There	can	be	many	smaller
processes	or	few	bigger	ones	but	without	them	there	is	not	much	governance.
Most	often	these	processes	describe	how	to	work	with	Power	BI	and	sometimes
they	describe	how	to	support	Power	BI.	It´s	vital	that	the	processes	are	easily
discoverable	and	are	setup	as	a	part	of	a	whole	so	that	users	will	know	how	each
process	ties	into	the	whole	governance	strategy.	One	way	is	to	have	one	master
process	document	with	links	to	all	the	process	documents.	Another	way	is	to
store	all	the	process	documents	in	the	same	library	and	categorize	them	so	it´s
easy	to	navigate	between	them	and	they	are	logically	grouped.
We	will	look	at	the	seven	most	common	(in	the	authors	opinion)	processes	and
see	examples	on	what	they	might	contain.

1-Development	process
A	development	process	most	often	describes	how	a	report,	datasets	or	both	are
developed.	They	describe	where	you	develop	the	Power	BI	content	and	how	you
store	and	version	your	files.
Developing	Power	BI	content
It	is	recommended	to	always	develop	Power	BI	content	in	Power	BI	Desktop
rather	than	in	the	Power	BI	Service.	The	main	reasons	for	developing	in	Power
BI	Desktop	are	the	following:
Power	BI	Desktop	has	full	functionality	while	the	Power	BI	Service	does	not
have	full	parity.	The	Power	BI	Service	has	very	limited	data	manipulation
although	Dataflows	for	Power	BI	do	have	some.	It´s	not	possible	to	version	the
content	in	the	Power	BI	Service	(see	next	section)
Storing	and	versioning	Power	BI	content
When	you	develop	in	Power	BI	Desktop	you	can	store	the	original	file	in	a
secure	place	and	version	it.	When	creating	reports	in	the	Power	BI	Service	you
don´t	have	a	source	file	and	cannot	store	a	master	copy	of	it.	If	someone	changes
the	report	or	even	deletes	it,	you	cannot	go	back	to	the	original.	Another

advantage	of	using	Power	BI	Desktop	is	that	you	can	put	the	file	into	version	or
source	control.	This	enables	you	to	revert	to	older	versions	without	storing
multiple	copies	of	the	report	under	different	names.	One	such	place	that	many
organizations	use	is	OneDrive	for	Business	which	has	built	in	version	control.
Many	BI	teams	have	source	control	systems	they	use	but	they	are	often
cumbersome	for	business	users	that	don´t	normally	use	such	systems	whereas
OneDrive	for	Business	is	merely	a	folder	on	the	computer	if	synchronized.
Working	on	reports	in	Power	BI	Desktop	also	allows	for	the	developer	to	have
reports	as	work	in	progress	without	interfering	with	reports	in	the	Power	BI
Service.
A	development	process	will	describe	the	above	in	detail,	fitting	to	the	needs	of
the	organization

2-Publishing	Process
The	publishing	process	usually	describes	how	to	set	up	multiple	environments
and	how	to	promote	Power	BI	content	between	them.
Since	the	Power	BI	Service	does	not	have	built	in	functionality	for	multiple
environments	it´s	important	to	describe	how	that	should	be	done	(if	relevant	to
your	organization).	The	most	common	way	this	can	be	achieved	is	through	the
use	of	multiple	workspaces.	You	would	create	one	workspace	for	each
environment	and	move	the	datasets	and	reports	between	them	as	they	go
between	development	stages	such	as	development,	test,	pre-production	and
production.	A	Publishing	process	normally	describes	how	this	should	be
achieved	and	how	you	go	about	promoting	datasets	between	environments.	This
can	be	done	using	simple	publish	in	Power	BI	Desktop	or	more	elaborately	using
the	Power	BI	REST	API.	The	process	will	normally	reference	the	Naming
Standards	and	Security	processes	for	the	workspace	naming	and	access	control.

3-Sharing	Process
Generally	speaking,	there	are	four	ways	of	sharing	Power	BI	report	or	a
dashboard	with	an	end-user:
●								Share	the	Power	BI	Desktop	file
●								Direct	sharing	of	reports	and	dashboards
●								Give	access	to	a	Power	BI	Workspace	where	the	report	and/or	dashboard

reside
●								Share	a	Power	BI	Workspace	App

	

Sharing	a	Power	BI	Desktop	file	is	not	recommended	as	the	user	will	have	full
control	over	the	report	and	can	change	whatever	they	want	and	can	access	all	the
data	if	the	data	is	imported.	The	user	can	also	make	their	own	copy	of	the	report
and	change	things	the	original	author	does	not	have	any	control	over.
Directly	sharing	a	Power	BI	report	or	dashboard	is	a	method	that	can	be	used	in
certain	circumstances.	It´s	not	recommended	unless	the	receivers	are	few	or	if
you	need	to	share	one	or	few	reports/dashboards	out	of	a	workspace	with	many
reports/dashboards.	The	main	drawbacks	of	direct	sharing	is	that	it	is	difficult	to
keep	track	of	who	has	access	and	which	reports/dashboards	have	been	shared
and	which	have	not.
Giving	access	to	a	Power	BI	Workspace	can	be	dangerous	as	the	user	can	in
most	cases	change	or	delete	the	report	as	well	as	access	all	the	data	in	the	report.
With	a	recent	change	it	is	now	possible	to	add	users	in	a	Viewer	role	in	the	new
type	of	workspaces.	I	would	still	argue	that	only	contributors	should	have	access
to	a	Power	BI	Workspace	and	the	viewer	role	used	for	users	that	don´t	need
editing	rights	but	will	still	contribute	such	as	tester.	See	next	section	4-Security
Process	for	more	details.
The	best	way	to	share	Power	BI	reports	and	dashboards	is	through	Power	BI
Workspace	Apps.	The	Workspace	Apps	are	made	to	share	to	a	larger	audience
and	include	functionalities	such	as	custom	navigation,	multiple
reports/dashboards	at	once	and	the	ability	to	share	the	finished	report	in	the	app
while	the	report	is	being	developed	in	the	workspace.	Microsoft	recommends
using	workspace	apps	to	share	Power	BI	content	with	end	users.

Figure	19-02:	Publishing	and	Sharing	in	Power	BI

The	Sharing	process	describes	how	to	share	reports,	dashboards	and	datasets	and
links	to	the	security	process	for	more	details.
	

4-Security	Process
A	security	process	describes	how	to	secure	Power	BI	content.	This	is	usually
split	into	two	categories:	Object	level	security	and	data	security.
Object	level	security
There	are	several	types	of	objects	that	get	created	in	the	Power	BI	ecosystem	and
need	to	be	secured.	These	objects	are:	Power	BI	Desktop	files,	Workspaces,
Workspace	apps,	datasets,	Power	BI	reports	and	dashboards	in	the	service.
Besides	that,	who	can	publish	against	certain	data	sources	in	the	Power	BI	On-
Premise	Gateway	needs	to	be	decided.
It	can	be	important	not	to	store	Power	BI	Desktop	files	where	unauthorized
people	can	get	access	to	them.	If	the	dataset	uses	import	mode	all	the	data	is
available	to	the	person	who	has	access	to	the	Power	BI	Desktop	file.	The
security	process	will	normally	point	this	out	and	advice	on	how	to	store	the
Power	BI	Desktop	file.
As	of	when	this	is	written	everyone	who	has	access	to	a	workspace	can	see	all
the	data,	can	change	all	reports	and	download	a	Power	BI	Desktop	file	of	all
reports	in	a	Power	BI	Workspace.	You	therefore	need	to	be	careful	of	who	get
access	to	Power	BI	Workspaces.	The	golden	rule	is	that	only	people	that	need	to
contribute	to	a	report	or	dataset	should	have	access	to	a	workspace.	In	other
words,	if	you	need	to	WORK	on	the	report	or	dataset	you	have	access	to	a
WORKspace.	A	security	process	will	also	describe	if	individuals,	Active
Directory	Security	groups	or	Active	Directory	Distribution	List	should	be	used
to	give	access	to	workspaces.
The	recommended	way	of	sharing	Power	BI	objects	is	via	a	Power	BI
Workspace	App	(see	previous	section	3-Sharing	Process).	Workspace	apps	can
be	considered	a	read	only	version	of	a	workspace	and	as	such	will	never	give	the
user	any	modification	rights.	That	said	it´s	important	to	give	only	authorized
people	access	to	workspace	apps.	A	security	process	will	normally	describe	how
to	give	access	to	workspace	apps	as	well	as	if	individuals,	Active	Directory
Security	groups	or	Active	Directory	Distribution	List	should	be	used	to	give
access.
Sharing	reports/dashboards	directly	with	end	users	is	not	recommended	in	most

cases.	If	you	do,	you	can	keep	track	of	who	the	report/dashboard	has	been	shared
with	using	the	Share	dialog	window.	A	security	process	will	describe	how	and
when	you	should	use	direct	sharing	and	how	to	(manually)	monitor	who	has
access.	
Data	security
Sometimes	it´s	not	enough	to	just	control	access	on	an	object	level.	An	example
of	this	is	when	a	single	cost	report	serves	the	whole	organization,	but	department
managers	can	only	see	the	data	for	their	own	departments.	If	that	kind	of	security
should	be	done	using	object	level	security	the	author	would	need	to	create	as
many	copies	of	the	report	as	there	are	departments.	Instead	it´s	more	efficient	to
secure	the	data	instead	of	the	objects.	Securing	data	in	that	way	is	often	referred
to	as	row-level	security.	Power	BI	allows	for	row-level	security	where	the	report
author	can	do	static	or	dynamic	row	level	security	allowing	or	denying	access	to
whole	tables	or	the	content	of	certain	columns.	When	to	do	data	security	and
how	to	implement	it	is	often	dependent	on	other	security	and	privacy	processes
as	well	as	rules	and	regulation	such	as	GDPR.
Another	aspect	of	data	security	is	tightly	tied	to	development	processes	as	it´s
best	practice	to	connect	to	development	versions	of	the	source	system	until	the
report	is	ready	and	has	been	properly	secured.	The	main	reason	for	this	is	that
development	versions	of	source	system	don´t	usually	have	real	up	to	date	data	in
them	thus	preventing	the	real	data	from	getting	into	the	wrong	hands.	After	the
author	has	secured	the	data	and	objects	as	prescribed	in	the	security	process	the
data	source	is	switched	to	other	environments	ending	with	the	production
environment	when	ready	to	be	released	to	users.
Deciding	how	users	get	added	to	the	Power	BI	On-Premise	Gateway	is	very
important.	The	tendency	is	to	just	add	all	developers	to	the	needed	data	source	in
the	gateway	but	from	a	governance	perspective	it´s	important	to	only	add	users
that	have	been	approved.	Usually	the	process	is	that	the	data	or	data	source
owner	needs	to	approve	who	can	publish	against	the	data	source.	This	is	often	an
excellent	opportunity	to	engage	the	developer	and	make	sure	their
reports/dashboards	are	following	best	practices	and	are	approved.
A	security	process	will	describe	how	to	secure	access	to	objects	as	well	as	to
data	and	will	often	refer	to	other	security	and	process	documents	that	exist
within	the	organization.

5-Naming	standard	process

One	of	the	most	undervalued	process	is	the	Naming	Standard	process.	Having
this	process	early	in	the	Power	BI	implementation	will	greatly	improve	the
usability	of	the	Power	BI	environment.	Finding	workspaces,	reports,	dashboards
and	datasets	can	be	very	tricky	when	you	have	hundreds	of	workspaces	with	no
clear	naming	convention.	When	each	project	has	development,	test,	pre-
production	and	production	workspaces	(see	1-Development	process)	the	number
of	workspaces	can	increase	fast.	Having	a	clear	naming	convention	describing
how	to	name	workspaces	as	well	as	how	to	identify	different	environment	is	very
important.	Another	common	issue	is	that	the	user	only	sees	certain	amount	of
characters	in	the	workspace	name.	Many	users	don´t	realize	this	and	put	the
environment	name	at	the	end	but	when	browsing	the	workspaces	in	the	Power	BI
Service	you	sometimes	don´t	see	the	end	of	the	name	and	therefore	need	to
hover	over	the	workspace	name	to	see	which	one	is	the	dev	or	production
workspace.	A	Naming	Standard	process	will	often	be	linked	to	a	more	general
naming	standard	process	within	an	organization.

6-Support	process
Many	organizations	neglect	to	create	a	proper	support	organization	when
implementing	Power	BI	(see	Roles	section).	Having	a	good	support	process	will
enable	your	current	support	organization	or	dedicated	Power	BI	support	people
to	more	easily	assist	users	when	needed.	A	support	process	will	help	non-Power
BI	supporters	to	know	when	to	dig	in	and	try	to	solve	a	problem	and	when	to
refer	the	problem	to	the	report	owner	or	Power	BI	Support	people.
Typically,	a	support	process	will	describe	common	scenarios	like	access
requests,	no	data	incidents,	wrong	data	incidents	and	change	requests	to	Power
BI	content	and	guide	the	supporter	on	how	to	react.	Depending	on	how
established	your	support	process	is,	your	support	organization	might	do	none,
some	or	all	of	the	support	on	Power	BI	content.	If	you	have	a	support
organization,	they	will	get	support	requests	on	Power	BI	because	users	are	used
to	getting	support	there.	Therefore	it´s	important	that	you	integrate	your	Power
BI	support	into	your	current	support	organization	even	though	it´s	only	for	them
to	pass	it	on	to	the	“real”	Power	BI	supporters.
If	your	access	is	generally	done	via	AD	security	groups	or	AD	distribution	lists	a
non-Power	BI	support	organization	will	be	able	to	support	Power	BI	access
requests	as	long	as	there	is	a	separate	support	document	for	each	Power	BI
Workspace	App.	This	will	greatly	reduce	the	manual	work	by	the	Power	BI
developers	or	administrators	and	often	reduce	the	time	to	get	the	request

resolved.
Your	supports	should	also	have	a	process	section	on	how	to	handle	dataset
refresh	failures	and	a	way	to	redirect	support	requests	to	the	Power	BI
Application	owner	or	data	owner	if	there	is	a	data	issue.

7-Tenant	Settings	process
There	are	several	settings	in	the	Power	BI	admin	portal	that	are	important	when
it	comes	to	governance.	Publish	to	web,	Sharing	outside	of	organization,	Export
data,	Internal	support	page	to	name	few	are	all	very	important	for	different
reasons.	It´s	very	important	that	the	organization	has	a	process	in	place	defining
how	each	setting	in	the	Power	BI	Admin	portal	should	be	set,	who	the	setting
should	apply	to	and	describe	why	it´s	important.	Unfortunately,	there	is	no	way
of	automatically	monitoring	changes	in	the	Admin	portal	which	makes	it	even
more	important	to	have	the	settings	well	documented.

Training
If	you	want	to	have	a	successful	Power	BI	implementation	training	is	very
important.	You	want	to	train	everyone	who	touches	Power	BI	but	in	a	different
way	depending	on	their	role.	You	want	to	make	sure	you	get	to	everyone	and
deliver	the	right	training	based	on	their	needs.	In	this	section	we	will	see
examples	of	what	categories	of	training	you	can	use,	the	content	of	each	training
and	the	most	effective	delivery	method.	It´s	not	only	governance	training	that	is
important.	Training	users	in	properly	using	Power	BI	and	using	best	practices
will	deliver	value	faster	and	will	make	report	and	dataset	developers	more
compliant.
One	of	the	things	we	will	explore	is	how	to	automate	the	training	offer	to	users
by	using	Microsoft	Flow	in	combination	with	Office	365	(who	has	license)	and
the	Power	BI	audit	log	(what	are	they	doing)

Training	categories
The	most	common	training	categories	are	Consumer,	Report	Developer	and
Report	and	Dataset	Developer.	For	each	category	there	is	a	definition	of	who
belongs	to	it	as	well	as	what	training	content	is	appropriate	and	how	it	should	be
delivered.
Consumer	training
Consumers	are	normally	defined	as	Power	BI	users	than	will	only	consume
reports	or	dashboards	created	by	others.	They	will	never	create	their	own	or
modify	any	content.	This	is	normally	the	biggest	group	of	Power	BI	users	and	is
often	overlooked	when	it	comes	to	training.	At	the	same	time	this	group	is	the
easiest	to	train.
The	content	of	the	consumer	training	is	usually	general	training	in	navigating
Power	BI.	How	to	log	in	and	find	content,	how	to	open	a	report	or	dashboard,
how	to	use	the	“toolbar”	above	a	Power	BI	report/dashboard	and	the	most
common	ways	to	interact	with	a	Power	BI	report/dashboard	such	as	navigating
between	pages,	using	buttons	and	bookmarks	and	using	slicers	and	filters.	The
appropriate	delivery	method	for	the	consumer	training	is	videos	or	training
manuals.	Live	training	is	not	needed	and	normally	too	expensive,	due	to	the
number	of	people.	The	exception	from	this	is	if	you	want	to	train	a	subset	of
consumers	on	a	particular	report	or	dashboard.	That	is	often	best	done	with	live
classroom	training	as	then	training	will	also	involve	how	to	analyze	the	data.
Report	Developer

A	report	developer	is	a	person	that	will	create	Power	BI	reports	on	top	of
readymade	datasets	created	by	others.	They	don´t	create	their	own	datasets	but
will	use	datasets	such	as	Power	BI	datasets	or	SQL	Server	Analysis	Services
models.
The	training	for	this	group	of	people	will	often	contain	topics	such	as
Visualization,	Storytelling	and	Publishing	and	sharing.	Below	is	an	example
from	a	real	training	course	for	report	developers.

1.	 Introduction	to	Power	BI
a.	 What	is	Power	BI
b.	 Components	of	Power	BI

2.	 Data	visualization
a.	 Introduction	to	visualization	best	practices
b.	 The	canvas	and	properties
c.	 Theming	reports
d.	 Basic	Charts	and	Visuals	in	Power	BI
e.	 Working	with	visuals	in	Power	BI	Desktop
f.	 Custom	Visuals	in	Power	BI	Desktop
g.	 Practice:	Create	report	pages	and	theming	them

3.	 Power	BI	Service
a.	 Introducing	workspaces
b.	 Sharing	options	in	Power	BI	Service
c.	 Dashboard	vs.	Report
d.	 Practice:	Publish	reports	to	My	workspace	and	share	it	with	a

colleague
4.	 Advanced	scenarios

a.	 Bookmarks	and	selection	pane
b.	 Report	page	tooltip
c.	 Designing	for	Mobile	devices

5.	 Introduction	to	Power	BI	development	process
a.	 Where	is	the	document
b.	 Content	of	the	document

6.	 Governance
a.	 Where	is	the	documentation
b.	 How	do	I	makes	sure	I´m	compliant
c.	 Best	practices	and	common	sense

The	report	developer	training	is	best	done	in	a	live	classroom	training	but	can	be

done	via	live	online	if	required.	It´s	also	possible	to	create	an	on-demand	video
course	but	it´s	the	authors	opinion	that	the	users	will	get	the	fastest	start	and
biggest	benefit	from	a	in	person	live	classroom	training.
Report	and	Dataset	developers
Report	and	Dataset	developers	are	the	most	advanced	group	of	users	that	will
both	create	their	own	datasets	and	reports.
The	training	for	this	group	of	users	will	often	contain	all	the	topics	from	the
report	developer	course	plus	data	topics	such	as	Getting	and	cleaning	data,	Data
modelling,	Security,	refreshing	data	and	DAX.	Below	is	an	example	from	a	real
training	course	for	report	and	dataset	developers.

1.	 Introduction	to	Power	BI
a.	 What	is	Power	BI
b.	 Components	of	Power	BI

2.	 Getting	and	cleaning	data
a.	 Connecting	to	data
b.	 Direct/Live	query	vs.	import
c.	 Query	Editor
d.	 Transformation	GUI
e.	 Practice:	Getting	data	from	a	database,	Excel	file,	text	file	and	a

webpage
3.	 Data	Modelling

a.	 Why	is	data	modelling	important?
b.	 Relationships	in	Power	BI
c.	 Hierarchies,	formatting	and	hiding	columns
d.	 Sorting	by	other	columns
e.	 Date	Table
f.	 Practice:	Create	relationships	and	data	modelling

4.	 DAX
a.	 Introduction	to	DAX
b.	 Calculated	Columns	and	Measures
c.	 Practice:	Creating	calculated	columns	and	measures

5.	 Data	visualization
a.	 Introduction	to	visualization	best	practices
b.	 The	canvas	and	properties
c.	 Theming	reports
d.	 Basic	Charts	and	Visuals	in	Power	BI

e.	 Working	with	visuals	in	Power	BI	Desktop
f.	 Custom	Visuals	in	Power	BI	Desktop
g.	 Practice:	Create	report	pages	and	theming	them

6.	 Power	BI	Service
a.	 Introducing	workspaces
b.	 Sharing	options	in	Power	BI	Service
c.	 Dashboard	vs.	Report
d.	 Row	Level	Security
e.	 Schedule	Refresh	vs.	Other	types	of	connections
f.	 Gateway’s	Role	in	the	Service
g.	 Practice:	Publish	reports	to	app	workspace	and	share	it	as	a

workspace	app	with	a	colleague
7.	 Advanced	scenarios

a.	 Bookmarks	and	selection	pane
b.	 Report	page	tooltip
c.	 Designing	for	Mobile	devices

8.	 Governance
a.	 Where	is	the	documentation
b.	 How	do	I	makes	sure	I´m	compliant
c.	 Best	practices	and	common	sense

The	report	and	dataset	developer	training	is	best	done	in	a	live	classroom
training	It´s	also	possible	to	create	an	on-demand	video	course	but	it´s	the
authors	opinion	that	the	users	will	get	the	fastest	start	and	biggest	benefit	from	a
in	person	live	classroom	training.	In	the	experience	of	the	author	there	is	usually
need	for	a	person	in	the	room	to	help	people	out	as	the	dataset	part	of	the
training	is	often	quite	tricky.
Who	to	train	and	how	to	prioritize
One	of	the	things	the	author	has	seen	with	many	organizations	is	that	they
struggle	to	know	who	to	train	and	how	to	prioritize	when	to	train	them.	Here	is	a
suggested	method	of	discovering	who	to	train	and	how	to	prioritize	their
training.
The	first	issue,	who	to	train,	can	be	automated	in	part.	First	of	all,	you	can
discover	who	has	gotten	a	Power	BI	license	(Pro	or	free)	and	send	them	an
invitation	to	go	through	the	consumer	training,	which	is	in	the	form	of	online
videos	or	training	manuals,	so	the	users	can	do	it	in	their	own	time.	To	discover
who	has	a	license	one	could	build	a	call	to	the	Office	365	API	that	has	a	method

which	will	return	everyone	with	the	type	of	license	(Power	BI)	the	query	filters
on.	This	needs	to	be	stored	somewhere	and	then	the	next	time	the	call	is	made	a
comparison	is	made	to	the	existing	dataset	and	those	that	are	not	in	the	existing
dataset	are	new	licenses	and	should	be	invited	to	the	training.	The	whole	thing
can	be	automated	using	Microsoft	Flow	or	Azure	Logic	Apps.	To	decide	if
people	need	report	developer	or	report	and	dataset	developer	training	it	is
possible,	in	a	similar	way,	to	gather	data	from	the	Power	BI	Audit	log	in	Office
365.	The	Audit	log	contains	information	about	all	Power	BI	interactions
including	creation	of	content.	By	looking	at	who	is	already	creating	content	it
can	be	used	to	prioritize	training	as	those	who	are	already	creating	content
should	get	training	straight	away,	especially	on	the	governance.

Monitoring
One	of	the	cornerstones	of	governance	is	monitoring.	Monitoring	what	users	are
doing	and	monitoring	what	users	are	creating.	From	a	governance	perspective
monitoring	creation,	access,	usage,	changes,	deletion	and	data	exports	are	the
most	important.

Artefact	inventory
The	Power	BI	Rest	API	can	tell	you	what	artefacts	exists	and	who	has	access	to
what.	Besides	that,	the	Rest	API	has	powerful	administration	endpoints	that
allow	you	to	get	information	about	various	administration	objects	as	well	as
allow	you	to	perform	admin	tasks.	To	access	the	Power	BI	Rest	API,	you	can
either	create	your	own	web	application	and	call	the	API	or	you	can	use
PowerShell	to	call	it.	Microsoft	has	put	some	effort	into	wrapping	many	of	the
endpoint	in	the	API	into	PowerShell	cmdlets	and	they	have	also	created	a	cmdlet
to	wrap	the	call	to	the	Rest	API.	You	can	read	more	about	the	PowerShell
cmdlets	at	https://docs.microsoft.com/en-us/powershell/power-bi/overview?
view=powerbi-ps	and	you	can	read	more	about	the	Power	BI	Rest	API	at
https://docs.microsoft.com/en-us/rest/api/power-bi/.	The	user	will	have	access	to
some	of	the	endpoints	through	normal	Power	BI	workspace	access,	but	a	lot	of
the	endpoints	require	the	user	to	be	a	Power	BI	administrator,	at	least	if	they
want	tenant	level	information.

Monitoring	usage
The	Power	BI	Audit	log	can	tell	you	who	accessed	what	and	who	changed	or
deleted	what.	The	audit	log	is	part	of	the	Office	365	Security	and	Compliance
Centre.	The	Power	BI	audit	log	is	turned	off	by	default	but	can	be	turned	on	in
the	Power	BI	Admin	Portal.	To	get	access	to	the	audit	log	in	the	Office	365
Security	and	Compliance	Centre	you	need	to	have	the	View-Only	Audit	Logs	or
Audit	Logs	role	in	Exchange	Online	or	be	an	Office	365	admin.	It	is	possible	to
fetch	data	from	the	audit	log	in	two	ways.	One	is	to	log	into	the	Office	365	audit
Security	and	Compliance	Centre,	run	the	log	query	and	either	view	the	results	on
the	screen	or	download	the	results	as	a	CSV	file.	Another	way	is	to	use	the
Office	365	Rest	API	which	is	the	preferred	way	if	you	want	the	automate	the
collection	of	the	log	information.	Note	that	the	log	is	only	stored	in	the	Office
365	Security	and	Compliance	Centre	for	90	days	so	if	you	want	to	keep	it	for	a
longer	time	you	will	need	to	collect	it	and	store	it	in	a	different	place	such	as
data	warehouse.	More	information	about	the	audit	log	and	how	to	collect	the
data	can	be	found	here:	https://docs.microsoft.com/en-us/power-bi/service-

https://docs.microsoft.com/en-us/powershell/power-bi/overview?view=powerbi-ps
https://docs.microsoft.com/en-us/rest/api/power-bi/
https://docs.microsoft.com/en-us/power-bi/service-admin-auditing

admin-auditing
The	author	recommends	that	both	the	audit	log	and	artefact	inventory	is
collected	and	stored	in	a	database.	Partly	because	of	governance	issues	as
described	before	but	partly	because	there	is	valuable	information	in	there	about
adoption,	development	over	time	and	user	behavior	which	could	be	beneficial
for	the	organization	at	a	later	time.

Figure	19-03:	Monitoring	Power	BI	and	reporting	the	results
At	the	time	of	this	writing	there	are	91	events	that	are	monitored	in	the	Power	BI
audit	log.	If	your	organization	does	not	want	to	store	all	that	data	you	should
consider	taking	all	events	that	are	about	viewing,	editing	(including	deleting)	and
exporting.	When	you	have	started	the	collection	of	the	data	you	might	want	to
join	it	to	further	information	from	the	artefact	inventory	discussed	in	the
previous	section	as	well	as	information	about	the	organization	employees	and	the
organization	structure.

Monitoring	the	Power	BI	On-Premise	Gateway
The	Power	BI	On-Premise	Gateway	is	a	Windows	service	running	on	an	on-
premise	server.	The	gateway	needs	to	be	monitored	as	other	Windows	services.
The	main	things	to	monitor	are	the	service	uptime	and	server	performance.
Normally	monitoring	is	in	the	hands	of	an	infrastructure	team	(if	one	exists).

Roles
To	be	successful	with	a	Power	BI	implantation	in	the	long	run	it´s	important	to
have	well	defined	roles.	This	is	most	likely	different	from	organization	to
organization	and	in	some	cases	the	same	person	might	have	more	than	one	role.
The	most	common	roles	are	Power	BI	Administrator,	Power	BI	Gateway
Administrator,	Data	steward,	Power	BI	Auditor	and	Power	BI	Supporter(s).	In
this	section	we	will	look	at	each	role,	it´s	responsibilities	and	what	type	of
person	should	have	this	role.

Power	BI	Administrator
The	Power	BI	Administrator	has	two	main	responsibilities,	Power	BI	tenant
settings	and	capacity	administration	if	the	organization	has	Power	BI	Premium.
Power	BI	tenant	settings,	set	in	the	Power	BI	Admin	portal,	are	very	important
when	it	comes	to	governance.	The	Power	BI	Administrator	can	change	all
settings	within	the	Power	BI	Admin	portal	and	therefore	has	the	power	to	allow
for	all,	allow	for	certain	groups	or	deny	users	access	to	certain	functionality.
A	Power	BI	administrator	can	also	administer	Power	BI	Premium	capacities	and
assign	workspaces	to	those	capacities.
Far	too	often	the	Power	BI	administrator	is	the	first	developer	that	used	Power
BI	within	an	organization	or	the	“best”	developer.	We	often	refer	to	these
administrators	as	accidental	administrators.	In	some	instances,	this	is	fine,	but
the	preferred	way	is	to	look	for	the	best	suited	person	that	can	fulfil	the	role
within	the	organization.	Typically,	this	person	knows	Power	BI	and	it´s	terms	but
has	strong	understanding	of	governance	principles	and	the	importance	of	the
Power	BI	tenant	settings.	This	is	usually	not	a	fulltime	role,	but	some	small
allocation	is	needed	if	the	person	is	to	be	able	to	do	a	good	job.

Power	BI	Gateway	Administrator
The	Power	BI	Gateway	Administrator	is	responsible	for	ensuring	the	Power	BI
On-Premise	Gateway	is	running,	updated	and	has	its	performance	monitored.
The	administrator	also	has	the	encryption	keys	to	the	gateway.
The	Power	BI	On-premise	Gateway	is	a	central	component	in	the	Power	BI
ecosystem	and	requires	someone	to	administer	it.	The	person	might	be	part	of	an
infrastructure	team	as	the	tasks	are	mostly	about	monitoring	and	updating	which
is	often	an	integrated	part	of	infrastructure	teams.

Data	steward

The	data	steward	role	is	not	Power	BI	specific	but	usually	focused	on	master
data.	The	reason	it	mentioned	here	is	that	it´s	often	a	central	part	of	a	governance
strategy	as	master	data	is	a	very	important	part	of	it.	Due	to	it	not	being	Power
BI	specific	I	won’t	get	into	any	specifics	about	the	role	but	instead	leave	it	up	to
the	reader	to	gather	information	about	it.

Power	BI	Auditor
The	Power	BI	Auditor	is	the	one	responsible	for	monitoring	the	Power	BI	Audit
log	in	Office	365.	The	main	responsibilities	of	the	role	are	to	make	sure	the	audit
data	is	gathered	and	stored	and	most	importantly	that	Power	BI	users	are	acting
in	accordance	with	the	organization’s	governance	processes.	This	means
reporting	on	top	of	the	audit	data	and	flagging	non-compliance	actions.	They
will	often	make	parts	of	the	audit	log	or	reports	on	top	of	the	audit	log	available
to	other	people	within	the	organization	so	they	can	fulfil	their	role.	The	data	will
often	be	anonymized	when	made	available	to	others.
This	role	is	often	in	the	hands	of	an	internal	auditing	function,	governance	team
or	security	team.

Power	BI	Supporter
For	a	successful	Power	BI	implementation	there	is	a	great	need	for	someone	to
support	Power	BI	developers.	The	main	reason	for	this	is	that	as	Power	BI	is	a
self-service	tool,	developers	are	often	business	people	with	different
backgrounds	that	are	not	necessarily	used	to	developing	integrations,	data
models	or	visualizations.	Sadly,	the	author	finds	this	role	is	often	overlooked	or
the	ones	that	are	appointed	to	the	role	are	supposed	to	do	that	AND	their	normal
full-time	job.	This	diminishes	the	success	of	a	Power	BI	implementation.
The	main	responsibilities	of	the	Power	BI	Supporter	vary	but	often	are	to	assist
users	with	Power	BI	related	problems,	assure	best	practices	are	followed,
champion	new	functionalities	and	generally	be	the	go-to	person	for	the	business.
The	person(s)	selected	for	this	role	are	often	the	internal	super	users	or	part	of
the	business	intelligence	function	in	the	organization.	The	most	important	thing,
in	the	opinion	of	the	author,	is	that	with	the	role	comes	allocated	time	because
without	it,	the	quality	of	the	organizations	Power	BI	work	might	suffer.

Summary
This	chapter	suggest	that	a	good	Power	BI	governance	strategy	has	4	pillars,
Processes,	Training,	Monitoring	and	Roles.	Organizations	need	to	define
processes	so	that	their	users	do	Power	BI	right,	train	them	to	follow	the
processes	as	well	as	best	practices	when	it	comes	to	Power	BI,	Monitor	the
Power	BI	environment	and	have	defined	roles	and	responsibilities.	Each	pillar
has	equal	importance	and	for	a	successful	Power	BI	implantation	you	want	to
make	sure	you	think	about	them	all.
	

About	the	Author

Ásgeir	is	a	Data	Platform	MVP	and	Chief	Consultant	at	Datheos.	He	works	on
Business	Intelligence	solutions	using	the	whole	of	the	MS	BI	stack.	Ásgeir	has
been	working	in	BI	since	2007	both	as	a	consultant	and	internal	employee.
Before	turning	to	BI	Ásgeir	worked	as	a	technical	trainer	and	currently	teaches
BI	courses	at	the	Continuing	Education	Department	of	the	University	of
Iceland.	

Ásgeir	speaks	regularly	at	events	both	domestic	and	internationally	and	is	the
group	leader	of	the	Icelandic	PASS	Group	as	well	as	the	Icelandic	Power	BI	user
group.	

Ásgeir	is	passionate	about	data	and	loves	solving	problem	with	BI

Chapter	20:	Architecture	of	a	Power	BI	Solution	in	an
Enterprise	Environment
	
Author:	Dr	Greg	Low,	SQL	Down	Under
Most	of	my	consulting	work	is	in	large	enterprises,	particularly	large	financial
organizations	like	superannuation	(retirement	fund)	companies	and	banks.	These
organizations	often	ask	me	for	a	“big	picture”	of	how	Power	BI	should	integrate
with	an	enterprise	architecture.	Time	and	again,	what	they	really	are	asking	me
for	is	how	to	do	the	following:
●								Keep	core	organizational	data	on-premises
●								Provide	secure	access	to	reports	and	dashboards	in	Power	BI
●								Control	who	sees	which	parts	of	the	data

In	this	chapter,	I	describe	how	to	do	this.
	

The	Big	Picture
	
They	say	that	a	picture	paints	a	thousand	words,	so	let’s	start	with	a	picture	of
the	typical	outcome	that	I’m	looking	to	achieve:
	

	
Figure	20-01:	Big	picture	of	an	enterprise	architecture	involving	Power	BI
The	diagram	in	Figure	20-01	shows	the	cloud-based	infrastructure	above	the
dividing	gray	line,	and	the	on-premises	infrastructure	below	that	line.	Let’s	now
look	at	each	of	the	key	sections	of	this	diagram	separately.
	

Identity	Management
	
I	always	tell	customers	that	identity	management	is	the	most	important	aspect	of
planning	this	type	of	architecture.	Figure	20-02	shows	the	core	components	that
are	involved.

Figure	20-02:	Core	components	for	Hybrid	Identity

On-Premises	Active	Directory
	
Organizations	that	use	Windows-based	PCs	today,	generally	use	Windows

Active	Directory	to	provide	identity	management.
	
Windows	Active	Directory	(AD)	provides	several	services:
	
●								ADDS	-	Active	Directory	Domain	Services
●								ADLDS	-	Active	Directory	Lightweight	Directory	Services
●								ADFS	-	Active	Directory	Federation	Services
●								ADCS	-	Active	Directory	Certificate	Services
●								ADRMS	-	Active	Directory	Rights	Management	Services

	

Credential	Spread	Issues
	
Most	enterprises	will	no	doubt	move	into	scenarios	that	involve	cloud-based
systems	and	require	cloud-based	authentication.	If	this	process	is	not	managed
well,	it	quickly	leads	to	a	problem	often	referred	to	as	YAUP	(yet	another
username	and	password)	where	overall	identity	management	becomes	a
significant	mess.
	
Even	if	tooling	like	Office	365	is	not	on	the	immediate	horizon,	early	investment
in	hybrid	identity	provision	via	AAD	is	important,	so	that	this	identity	spread
can	be	avoided	right	from	the	start.	Later,	Office	365	and	other	tools	can	then
utilize	the	same	hybrid	identity	configurations.
	

Hybrid	Identity
	
Azure	Active	Directory	(AAD)	provides	a	cloud-based	identity	service	that	can
help	in	avoiding	these	issues.	Importantly,	AAD	can	be	directly	integrated	with
the	existing	on-premises	AD,	to	avoid	users	needing	to	have	separate	identities
and	passwords	for	the	cloud	services	that	are	being	used.
	
It	is	important	to	note	that	this	hybrid	identity	can	also	be	used	in	a	wide	variety

of	other	applications.	I	checked	the	marketplace	gallery	today	and	over	2800
applications	are	advertised	as	directly	supporting	AAD	for	authentication.	These
can	be	seen	here:
	
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/category/azure-
active-directory-apps
	
As	well	as	the	standard	Microsoft	offerings	like	Office	365,	SharePoint	Online,
Exchange	Online,	Lync	Online,	etc.	all	of	which	use	AAD	for	identity,	many
organizations	are	adopting	best-of-breed	applications	for	different	aspects	of
their	businesses.	They	might	use	Zoom	for	meetings,	ZenDesk	for	a	helpdesk,	or
Drip	for	an	email	marketing	engine,	DropBox	for	cloud-based	storage	of	shared
documents,	etc.	These	applications	can	also	use	this	same	form	of	hybrid	identity
that	is	provided	by	AAD.
	

Integration	Applications
	
One	case	where	this	form	of	identity	management	is	crucial	is	where	integration
applications	are	used.	For	example,	a	retirement	fund	might	decide	that	when	a
new	member	is	added	to	their	core	systems,	that	a	new	entry	is	made	in
SalesForce,	and	when	that	happens,	a	new	email	sequence	is	enabled	in	Drip,
and	so	on.	Often,	applications	like	Zapier	or	Microsoft	Flow	are	used	to	provide
the	logic	behind	these	integrations.	Once	again,	having	a	single	form	of	identity
across	all	these	applications	is	highly	desirable.
	

Azure	Active	Directory	Offerings
	
AAD	currently	provides	three	main	services:
	
●								AAD	(Azure	Active	Directory)	–	this	provides	identity	services	-

exposing	a	graph	API	along	with	OAuth,	SAML-P,	WS-FEDERATION,
and	more

●								AACS	(Azure	Access	Control	Services)	–	this	federates	identities	from

https://azuremarketplace.microsoft.com/en-us/marketplace/apps/category/azure-active-directory-apps

external	providers	–	generally	on-premises	AD	but	could	also	potentially
include	Google,	Yahoo,	Facebook,	which	could	be	important	if	member
access	is	ever	provided	to	resources

●								AADDS	(Azure	Active	Directory	Domain	Services)	–	this	is	basically	a
domain	controller	as	a	service.	It	is	a	scalable,	high-performance,
managed	domain	service	for	domain-join,	LDAP,	Kerberos,	Windows
Integrated	authentication,	and	group	policy

	
A	major	advantage	of	AAD	is	the	ease	of	enabling	options	like	multi-factor
authentication	(MFA),	and	cloud-based	password	reset.	The	implementation	of
these	options	alone	often	brings	significant	savings	to	IT	support	teams.
	
An	added	advantage	is	that	member/customer/partner	identities	can	also	be
stored	and	managed	in	the	directory	tenant.
	

Enhanced	Security	on	Terminations
	
In	terms	of	overall	security,	it	is	worth	noting	that	this	approach	to	identity	also
provides	a	single	point	where	access	can	then	be	removed	when	required.	If	an
employee	leaves,	and	their	identity	is	disabled	in	the	local	AD,	the	federation
and	hybrid	identity	means	they	will	also	no	longer	have	access	to	any	of	these
associated	applications.
	
If	separate	identities	had	been	used,	disabling	even	a	single	employee	can
become	an	onerous	task,	and	one	that	potentially	could	leave	gaps	open	after	the
employee	has	been	terminated,	until	they	are	all	cleaned	up.
	

Implementing	Hybrid	Identity
	
Azure	AD	Connect	is	the	synchronization	mechanism	for	on-premises	AD	and
cloud-based	AAD.	It	provides	a	choice	of:
	
●								Password	hash	synchronization	(PHS)
●								Pass-through	authentication	(PTA)
●								Federation	(AD	FS)

	
My	usual	recommendation	is	to	implement	Federation	as	it	provides	the	highest
level	of	interoperability	and	ensures	that	not	even	hashed	passwords	are	sent	to
the	cloud.
	

Application	Integration
	
It	is	likely	that	many	new	applications	will	be	cloud-based.	Integrating	these
with	AAD	is	now	straightforward.
	
For	.NET	development,	developers	can	include	the	WIF	(Windows	Identity
Framework)	in	their	projects.	The	application	is	registered	with	AAD	to	create	a
Service	Principal	(which	includes	an	identifier	called	an	AppPrincipalID,	and	a
secret).
	
When	logon	to	an	application	starts,	control	is	transferred	to	AAD	for	logon.
AAD	eventually	calls	the	application	back	and	passes	a	signed	token	that	is	then
used	to	verify	the	user.
	

Authentication	for	External	Users
	
Azure	AD	has	two	forms	of	authentication	for	external	users:
	

●								Azure	AD	B2B	(business	to	business)	is	used	to	assign	permissions	on
internal	resources	to	external	users.	It	is	generally	used	with	partner
organizations	and	allows	collaboration	with	internal	users.	The	pricing
structure	for	Azure	AD	currently	allows	a	1:5	ratio	for	internal	users	to
B2B	partner	users.

●								Azure	AD	B2C	(business	to	consumer/customer)	is	used	to	manage
authentication	to	corporate	applications	by	external	users.	It	is	often	used
for	customers	or	members	who	need	access	to	corporate	websites.	These
users	do	not	need	to	be	part	of	the	internal	domain’s	user	list.	There	is	no
practical	limit	to	the	number	of	these	external	users	that	can	be	attached.
The	pricing	is	based	upon	the	number	of	authentications	performed	each
month.	The	first	50,000	authentications	are	currently	free.

	
B2B	allows	the	use	of	MFA	(multi-factor	authentication)	if	the	Azure	AD	tier	is
one	that	supports	it.
	
B2C	allows	the	use	of	MFA	at	a	very	low	additional	cost.
	

Password-less	Implementation
	
I	have	mentioned	this	topic	for	completeness	although	it	might	be	a	component
of	a	longer-term	strategy.	Passwords	are	fast	becoming	considered	as
inappropriate	for	authentication.	Many	industry	leaders	consider	password
authentication	as	fundamentally	broken.
	
The	costs	associated	with	using	passwords	are	fast	outweighing	the	benefits.
Although	many	organizations	have	strict	password	policies,	even	the	strongest
passwords	are	easily	phishable.
	
For	enterprise	IT	departments,	password	and	identity	related	support	and
maintenance	is	expensive.	And	as	it	becomes	common	for	IT	teams	to	require
ever	stronger	password	complexity	and	demanding	more	frequent	password
changes,	the	costs	rise	ever	more	quickly.

	
Details	on	approaches	to	password-less	implementations	can	be	found	here:
	
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE2KEup
	

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE2KEup

On-Premises	Source	Data
	
The	data	that	Power	BI	operates	can	come	from	on-premises	data	sources.	My
preference	is	for	the	following	structure,	as	shown	in	Figure	20-03.

Figure	20-03:	On-premises	databases
	

Dimensional	Data	Models
	
Reporting	directly	from	source	systems	(particularly	for	strategic	reporting)	is
generally	undesirable	for	several	reasons	such	as:
	
●								Transactional	source	systems	are	designed	to	support	their	applications,

and	are	generally	highly	normalised
●								The	relationships	between	the	tables	are	often	complex	and	complex	joins

are	required	in	queries
●								Names	of	columns	and	tables	are	not	directly	usable	in	reports	and	charts
●								Most	source	systems	do	not	support	versioning	–	they	only	show	a	single

current	state	of	the	data
●								Reporting	can	place	a	significant	processing	load	on	the	source	systems

	

Instead,	we	recommend	the	creation	of	a	dimensional	data	warehouse	that,	while
it	is	still	a	relational	database	in	SQL	Server,	is	structured	to	support	analysis	and
reporting	rather	than	transactional	processing.
	
Some	key	advantages	of	this	type	of	model	are:
	
●								Provides	a	single	cleaned	up	model	of	the	data
●								Avoids	the	need	for	data	cleansing	in	all	reports	and	analytics	by

centralising	it
●								Has	simplified	(star	schema	based)	relationships
●								Directly	supports	both	reporting	and	analytics
●								Easy	for	end	users	to	navigate	when	required
●								Names	are	directly	reusable	in	reports,	charts,	and	dashboards
●								Can	support	versioning	if	needed
●								Can	provide	a	single	view	of	data	from	multiple	source	systems

	
	
Customers	often	want	to	build	all	reporting	against	the	source	system	data,	but
this	is	not	appropriate.	It	generally	impacts	the	system	too	greatly;	the	source
system	data	is	usually	not	in	a	form	that	is	designed	for	reporting	and	analytics;
it	is	common	to	need	to	combine	data	from	multiple	source	systems;	and	it	is
also	often	useful	to	add	versioning	of	the	data	that	is	not	provided	by	the	source
systems.
For	example,	if	I	have	customers	allocated	to	sales	territories,	and	I	rearrange	the
territories,	what	happens	when	I	view	last	year’s	sales	report?	Does	all	the	data
automatically	jump	into	the	new	territories?	I	might	want	that,	but	more
commonly,	I	want	the	data	to	still	look	the	same	as	it	did	last	year.	Versioning
can	help	to	fix	that.
One	of	the	challenges	with	any	BI	implementation	though,	is	that	if	a	separate
dimensional	data	warehouse	is	created,	latency	will	be	involved	in	the	transfer	of
source	system	data	across	to	the	data	warehouse.
It’s	important	to	separate	strategic	reporting	from	operational	reporting.

I	recommend	using	SQL	Server	Reporting	Services	(SSRS),	connected	directly
to	the	transactional	database,	for	operational	reporting	that	must	be	up	to	date.
For	reporting	that	is	more	strategic	in	nature,	and	can	generally	tolerate	some
small	latency,	I	recommend	using	Power	BI,	Excel,	and	SSRS,	with	all	of	these
supported	by	SQL	Server	Analysis	Services	(SSAS).
Strategic	reporting	is	best	delivered	from	an	analytic	data	model	(using	SSAS),
that	was	constructed	over	a	dimensional	data	model	in	a	separate	SQL	Server
database.	I	know	that	you’ll	read	information	that	tells	you	that	you	can	just
connect	Power	BI	or	other	dashboarding	tools,	directly	to	your	transactional
databases,	without	worrying	about	creating	a	dimensional	data	model	first.	And
while	that’s	strictly	true,	it’s	not	how	you	get	a	great	outcome.
Transactional	systems	make	poor	direct	data	sources	for	analytic	systems	and	for
most	dashboards.	They	also	rarely	hold	versioned	data.	A	dimensional	data
model	can	help	with	that.
	

Staging	and	Cleansing	Data
	
Your	reporting	and	analytics	will	need	data	from	source	systems.	I	recommend
implementing	staging	databases	to	be	used	for	import	and	cleansing	of	source
system	data	that	is	needed	for	reporting	and	analytics.	Generally,	I	try	to	achieve
this	while	meeting	the	following	aims:
	
●								Minimising	the	impact	on	the	source	system
●								Not	missing	any	data
●								Not	duplicating	any	data
●								Cleansing	the	data	before	reuse

	
Wherever	possible,	I	try	to	import	data	incrementally.	This	is	possible	for	most
systems,	but	I	do	come	across	tables	where	this	is	not	possible,	and	I	need	to
retrieve	entire	tables.	But	I	aim	to	do	the	data	retrieval	in	a	way	that	avoids
excessive	load	on	the	source	system.
	
With	incremental	loading,	it	is	critical	to	avoid	missing	data,	and	duplication	of

data.
	
Source	system	data	generally	also	needs	to	be	cleansed	i.e.	correcting/aligning
data	values,	supplying	missing	values,	correcting	invalid	values,	fixing
relationships	between	data	elements.
	
I	use	staging	databases	in	the	dimensional	data	warehouse	to	hold	the	data	where
this	work	is	being	performed.
	

Analytic	Data	Models
	
SSAS	allows	you	to	use	advanced	mashup	and	modelling	features	to	combine
data	from	multiple	data	sources,	define	metrics,	and	secure	your	data	in	a	single,
trusted	tabular	semantic	data	model.
	
The	data	model	provides	an	easy	and	fast	way	for	users	to	browse	large	amounts
of	data	for	ad	hoc	analysis.	Queries	on	the	data	model	will	often	be	dramatically
faster	than	the	equivalent	queries	run	directly	on	the	dimensional	data
warehouse.
	
Power	BI,	Excel,	and	other	applications	can	be	used	as	the	visualisation	layer	for
the	data	in	SSAS.
SSAS	provides	the	ability	to	create	a	semantic	layer	above	your	dimensional
data	model,	by	creating	an	analytic	data	model.	There	are	two	flavors	of	SSAS:
Multi-dimensional	and	Tabular.	At	this	point,	I	would	almost	always	recommend
that	you	use	a	tabular	data	model.	There	are	a	handful	of	exceptions,	but	you
should	just	start	with	a	tabular	data	model	in	SSAS.
Power	BI	can	support	multi-dimensional	models	somewhat,	but	it	works	cleanly
and	efficiently	with	tabular	data	models	because	that’s	basically	the	same	data
model	that	it	uses	internally	within	Power	BI.
As	well	as	loading	tables	from	your	underlying	dimensional	database,	the
analytic	model	allows	you	to	create:

●								Relationships	between	the	tables
●								Control	over	query	filtering	directions
●								Computed	columns	to	ease	navigation	and	simplify	the	data	for	the	user
●								Measures	such	as	totals	or	averages	over	time

Importantly,	an	analytic	data	model	in	SSAS	can	also	implement	RLS	(row	level
security)	based	on	the	users	and	groups	in	Active	Directory.	RLS	lets	you	make
sure,	for	example,	that	only	New	Zealand	users	see	New	Zealand	data,
Queensland	users	see	Queensland	data,	and	so	on.
While	it	is	possible	to	create	row	level	security	within	the	Power	BI	service,	it
will	be	tied	to	identities	within	Azure	Active	Directory.
	

Moving	the	data	between	databases
	
If	I’ve	convinced	you	that	you	need	a	dimensional	database,	and	an	analytic	data
model	between	your	source	systems	and	Power	BI,	you	also	need	to	be	able	to
move	data	around.	The	tool	that	I	typically	use	for	this	is	SSIS	(SQL	Server
Integration	Services).
SQL	Server	Integration	Services	(SSIS)	provides	graphical	tooling	for	the
creation	of	enterprise-level	data	integration	and	data	transformations	solutions
that	involve	SQL	Server.	In	fact,	it	can	be	used	for	even	broader	purposes	than
SQL	Server-related	integration.	It	can	copy	or	download	files,	load	data
warehouses,	cleanse	and	mine	data,	and	manage	SQL	Server	objects	and	data.
SSIS	can	work	with	a	wide	variety	of	data	sources	such	as	XML	data	files,	flat
files,	and	relational	data	sources,	and	then	load	the	data	into	one	or	more
destinations.	It	includes	a	rich	set	of	built-in	tasks	and	transformations,	graphical
tools	for	building	packages,	and	its	own	Catalog	database,	where	you	store,	run,
and	manage	packages.
Most	SQL	Server	installations	utilize	SSIS	for	a	wide	variety	of	scheduled	data
movement	tasks.	The	packages	that	are	created	with	it	can	be	scheduled	by	either
the	inbuilt	SQL	Server	Agent,	or	by	external	schedulers	such	as	Control-M.
Enterprises	can	use	SSIS	for	controlling	the	cleansing	of	data	in	the	staging
databases,	for	loading	data	into	the	dimensional	data	model,	and	for	processing
(i.e.	reloading)	the	analytic	data	model.

	

Paginated	Reporting
	
Apart	from	Excel,	SSRS	is	the	most	popular	Microsoft	BI	tool.	Since	2016,	the
server	aspects	of	SSRS	are	shipped	in	two	forms:
●								Report	Server	(RS)
●								Power	BI	Report	Server	(PBIRS)

Paginated	reports	can	also	now	be	deployed	to	the	Power	BI	service.
I	recommend	using	Reporting	Services	reports	for	both	operational	and	strategic
paginated	reporting.
SSRS	provides	the	ability	to	create,	publish,	and	manage	reports,	then	deliver
them	in	several	ways	such	as	in	a	web	browser,	embedded	within	an	internal
application,	on	a	mobile	device,	or	emailed	to	the	user.	Reports	can	be	viewed
on-demand,	or	they	can	be	scheduled.
The	web	portal	can	be	branded	to	provide	an	organizational	look	and	feel.
PBIRS	is	a	superset	of	RS	but	also	allows	deploying	some	Power	BI	reports
directly	to	an	on-premises	server.	PBIRS	is	licensed	by	either	SQL	Server
Enterprise	with	SA,	or	via	Power	BI	Premium.	Most	organizations	have	SQL
Server	Enterprise	Edition	with	SA,	so	it	is	possible	to	take	advantage	of	the
PBIRS	based	version.	Generally,	though,	I	recommend	that	Power	BI	reports	are
delivered	from	the	Power	BI	service	instead.
	

Providing	Power	BI	Access	to	the	On-Premises	Data
	
Power	BI	needs	access	to	the	on-premises	data	sources.	It	does	that	by	using	the
Enterprise	Gateway.	I	recommend	that	enterprises	implement	the	Microsoft
Enterprise	Gateway	to	support	development	of	applications	such	as	Power	BI,
Power	Apps,	Microsoft	Flow,	and	others.	The	gateway	is	shown	in	Figure	20-04.

Figure	20-04:	Enterprise	Gateway	providing	access	to	on-premises	data

Enterprise	Gateway
	
Tools	such	as	Flow,	Power	BI,	Power	Apps,	etc.	need	the	Microsoft	Enterprise
Gateway	to	be	deployed	before	they	can	access	any	on-premises	source	data.	It
should	be	deployed	before	any	of	those	applications	or	related	applications

require	it.	This	will	be	needed	when	starting	to	test	or	use	Power	BI	based
reports	and	dashboards,	and	if	Microsoft	Flow	becomes	part	of	the	integration
solution.
The	Enterprise	Gateway	provides	a	secure	communication	service.	It	avoids	the
need	for	applications	to	connect	into	the	on-premises	systems,	and	for	incoming
ports	in	the	corporate	firewall.	The	gateway	connects	outbound	to	Microsoft
infrastructure,	and	performs	certificate	exchanges	for	authentication.	Secrets
held	by	the	Microsoft	service	are	encrypted	by	a	key	that	is	supplied	by	the	local
gateway	via	the	certificate	exchange.
The	gateway	can	be	installed	on	almost	any	server	in	the	network.	Although	it
can	be	installed	(and	commonly	is	installed)	on	the	same	server	as	SQL	Server
Analysis	Services	or	the	SQL	Server	database	engine,	it	does	not	need	to	be.	If
you	were	using	import	mode	instead	of	Live	Query	mode,	it	would	be	better
supported	on	a	dedicated	server.
In	this	case	though,	when	it	connects	to	SSAS	using	Live	Query	mode,	it
impersonates	the	user	logged	into	Power	BI.
If,	for	some	reason,	the	domain	in	Azure	(and	Power	BI)	is	different	to	the	on-
premises	domain,	and	directory	sync	isn’t	being	used,	the	gateway	also	provides
the	ability	to	map	the	UPNs	(user	principal	names)	so	that	users	in	the	Azure	AD
domain	can	be	mapped	to	users	in	the	on-premises	domain.
You	can	read	more	about	the	Enterprise	Gateway	in	the	following	article:
https://docs.microsoft.com/en-us/power-bi/service-gateway-onprem
	

Power	BI	Service	for	Dashboards
	
I	recommend	implementing	Power	BI	for	the	deployment	of	dashboards	and
analytic	reports.	It	can	support	both	users	within	the	corporate	network	and
mobile	users,	as	shown	in	Figure	20-05.
	

https://docs.microsoft.com/en-us/power-bi/service-gateway-onprem

Figure	20-05:	Authenticating	mobile	Power	BI	to	Azure	AD
	

Power	BI	Service
	
Power	BI	is	one	of	the	most	popular	applications	that	Microsoft	has	ever
released.	It	is	made	up	of	several	components:
	
●								Power	BI	Service	is	an	online	(cloud-based)	service	that	is	used	to

provide	dashboards	and	analytic	reports	to	users.	Data	for	the	reports	can
be	sourced	from	a	very	wide	range	of	services,	applications,	and	locations.

●								While	users	could	connect	directly	to	the	Power	BI	website,	many	will
choose	to	use	native	applications	to	access	this	information.	There	are
downloadable	native	Power	BI	applications	(sometimes	called	Power	BI
Mobile)	for	Windows	8	and	later	(from	the	Microsoft	Store),	for	iOS
(from	the	Apple	Store),	and	for	Android	(from	the	Google	Play	Store).	It
is	also	possible	to	embed	Power	BI	directly	into	other	applications	with
minimal	code	changes.

●								Power	BI	Desktop	is	a	free	tool	that	can	be	used	to	create	datasets,	and
reports	based	on	those	datasets.	It	can	be	used	as	a	standalone	“thick”
client,	or	more	commonly,	these	datasets	and	reports	are	published	to	the
Power	BI	Service	for	consumption.

●								Power	BI	Report	Builder	is	a	tool	for	building	paginated	reports	to	be
deployed	to	the	Power	BI	Service.	This	capability	only	works	on	Premium
editions	of	the	Power	BI	Service.

	
Power	BI	uses	the	hybrid	AD	(that	I	have	also	recommended)	for	authentication.

	

Power	BI	Workspaces
	
The	Power	BI	Service	has	a	concept	of	workspaces.	These	are	collections	of
related	Power	BI	objects.	Workspaces	are	a	security	boundary.	I	generally	use
them	for	two	purposes:
●								To	separate	items	being	worked	on	by	development	teams
●								As	separate	environments	for	deployment	(i.e.	UAT,	Staging,	Production)

	

Connecting	Other	Applications
	
Tableau
	
Many	organizations	already	have	an	existing	investment	in	Tableau	reporting.
Generally,	I	find	that	companies	migrate	from	Tableau	to	Power	BI	when	they
have	the	opportunity,	based	on	licensing.	However,	while	it	would	be	possible	to
continue	to	use	Tableau	to	connect	to	its	current	data	sources	(often	direct
connections	to	source	systems),	if	use	of	Tableau	is	continued,	it	is	likely	that	it
should	move	to	using	the	recommended	dimensional	or	analytic	data	models	as	a
data	source,	or	once	the	XMLA	endpoints	for	the	Power	BI	service	are	fully
released,	Tableau	could	connect	to	those	interfaces.
	
Excel
	
Most	organisations	have	many	people	who	spend	a	great	deal	of	time	using
Excel	and	are	very	familiar	with	it.	Excel	is	a	very	capable	tool	and	it	could	be
used	for	further	reporting	and	analytics	via:
	
●								Connection	to	the	dimensional	data	model
●								Direct	connection	to	the	analytic	data	model	in	SSAS	(Excel	has	very

capable	options	for	doing	this)
	

Summary
	
Power	BI	can	be	a	key	part	of	an	enterprise	BI	strategy	that	keeps	sensitive	data
on-premises	while	still	providing	secure	access	to	dashboards.
	

About	the	Author
	

Greg	is	one	of	the	better-known	data	consultants	in	the	world.	He	is	a	long-term
Microsoft	Data	Platform	MVP,	and	a	member	of	the	Microsoft	RD	(Regional
Director)	program.	Microsoft	describe	the	RD	program	as	consisting	of	“150	of
the	world's	top	technology	visionaries	chosen	specifically	for	their	proven	cross-
platform	expertise,	community	leadership,	and	commitment	to	business	results”.
Greg	heads	up	a	boutique	data	consultancy	called	SQL	Down	Under	in
Australia.	He	is	best	known	for	his	SQL	Down	Under	podcast,	SDU	Tools,	and
his	online	training	school.	Greg	regularly	presents	at	conferences	world-wide.
	

Chapter	21:	A	Power	BI-only	Solution	for	Small
Organizations
	
Author:	Author:	Gogula	Aryalingam
Power	BI	plays	many	roles	when	it	comes	to	analytics:	A	visualization	and
dashboarding	tool	in	an	enterprise	solution,	a	prototyping	tool	to	evaluate	a
solution	to	a	business	problem,	a	data	profiling	tool	before	undertaking	an	ETL
implementation,	and	more.	Now,	there	is	this	universe	where	organizational
budget	overrules	many	things;	mainly	information	technology	spending,
including	analytics.	There	are	also	other	reasons,	such	as	end	users	not	seeing
the	entire	picture	of	how	analytics	will	help	the	organization.	Hence,	there	are
many	cases	where	business	intelligence	is	required	to	be	implemented	on	a	tight
budget	but	showcasing	quick	value.	This	is	where	Power	BI	shines.	In	this
chapter,	I	will	talk	about	how,	using	just	Power	BI,	you	could	design	a	complete
business	intelligence	solution.	Of	course,	there	will	be	limitations	and
workarounds,	but	that	is	expected.

Background
Traditionally,	a	data	warehouse	has	been	the	central	component	around	which
business	intelligence	is	built.	It	worked	on	the	principle	of	the	more	data	you
bring,	the	more	analytics	you	get.	Of	course,	data	had	to	be	of	quality	and
formulated	and	structured	to	suit	the	business	before	any	analysis	was	done.	At
present,	however,	analytics	and	the	way	analytics	is	done	has	changed
immensely.	There	are	various	types	of	analytics	that	can	be	performed,	which	is
enabled	by	the	various	types	of	data	and	numerous	ways	that	these	data	are
processed.	Yet	the	old	principle	of	a	data	warehouse	remains,	but	with	bells	and
whistles,	and	is	implemented	at	a	much	grander	scale	where	the	traditional
(relational)	data	warehouse	becomes	just	part	of	the	entire	(enterprise)	analytics
platform	or	modern	data	warehouse.
A	business	intelligence	tool	such	as	Power	BI	fits	in	very	nicely	with	a	modern
data	warehouse.	It	also	fits	in	very	nicely	in	an	enterprise	data	warehouse
environment	that	is	built	along	the	traditional	lines.	However,	there	is	also
another	arena	that	Power	BI	works	well	and	thrives.	In	this	arena,	you	have
small	organizations,	departments	of	medium	to	large	organizations,	and	in	some
case,	specific	large	organizations	themselves.
These	institutions	have	one	or	more	of	the	following	in	short	supply;	foremost	is
budget.	Then	comes	other	restrictions:	the	workforce	to	build	a	business
intelligence	solution	(with	the	right	skills,	the	right	size,	and	the
recommendation	of	the	right	technology),	stakeholder	buy-in	(with	the	right
conviction),	and	of	course	a	champion	who	sees	the	value	of	analytics.
When	such	things	are	in	short	supply,	the	justification	to	invest	in	a	business
intelligence	solution	is	naturally	bleak,	unless	those	in	these	institutions
understand	the	value	that	analytics	brings,	and	initiate	a	program	that	starts
small,	showcases	value,	then	expands	across	departments	or	verticals	of	the
organization,	and	finally	up	the	ranks	for	the	entire	organization.	The	keyword,
of	course,	is	budget	and	to	help	come	around	this	hurdle	we	have	Power	BI.
So,	the	premise	of	this	chapter,	and	what	it	will	build	upon	throughout	its	course
will	be	the	following:	how	with	Power	BI,	small	organizations,	departments	of
medium	to	large	organizations,	or	in	some	cases	even	large	organizations
themselves	can	start,	evolve	and	build	a	complete	business	intelligence	solution
with	the	least	investment.	Power	BI	goes	beyond	being	a	cost-effective	tool	by
providing	the	features	and	functionality	to	develop	such	a	solution	without	the
need	for	any	other	technologies,	hence	this	chapter	will	deal	with	how	all	of	this

can	be	achieved.	Of	course,	there	will	be	some	exceptions	and	limitations,	but
that	will	be	dealt	with	as	we	progress.

Putting	a	Solution	Together	with	Power	BI
A	cautious	approach	to	start	a	business	intelligence	solution	is	to	start	small	with
something	tangible	that	provides	value	to	a	stakeholder,	then	get	feedback	and
incorporate	changes.	This,	in	most	cases,	would	be	a	process	of	3-4	cycles.	A
tangible	deliverable	ideally	would	revolve	around	a	business	process	or	activity,
such	as	sales	performance	monitoring,	or	an	executive	dashboard.
Once	the	value	is	proven,	you	move	on	to	the	next	piece,	and	so	forth.	When	the
time	comes,	of	course,	an	enterprise	solution	will	be	the	natural	course.	While	by
that	time	much	value	will	be	seen	by	stakeholders,	where	budget	may	not	be	a
question	anymore.
Let	us	first	look	at	a	conceptual	solution	to	determine	who	the	actors	are,	and	the
processes	that	will	be	put	forth	for	these	actors	to	enable	analytics,	and	to
consume	analytics	for	business	intelligence.	All	of	what	you	will	see	in	this
solution	needs	to	be	implemented	at	the	beginning	but	can	be	included	as	the
solution	gains	acceptance,	and	new	requirements	come	in.

The	Actors
The	most	important	actor	is	the	business	user,	also	called	a	business	analyst.
Why	the	most	important?	Because	this	actor,	performs	a	variety	of	activities	in	a
business	intelligence	initiative	such	as	this.	From	understanding	the	business
needs,	then	going	back	to	the	various	business	systems	to	identify	the	right	data
sources,	connecting	to	them,	extracting,	transforming	and	integrating	the	data,
building	business	models	on	top	of	the	data,	and	finally	crafting	the	reports
against	the	business	models	to	answer	specific	business	questions.
Now,	it	does	not	mean	that	such	an	individual,	nor	that	the	business	analyst	role
should	be	carrying	out	all	these	tasks.	Depending	on	the	complexity	and
workforce	that	is	available,	the	data	wrangling	and	modeling	task	can	be
separated	out	to	an	individual	with	technical	skills.
The	end	user	becomes	the	ultimate	consumer.	They	are	the	folk	who	would	make
or	break	the	initiative.	If	the	value	is	delivered	to	them,	and	that	too	in	good
time,	they	are	the	ones	who	would	eventually	become	sponsors	and	stakeholders
for	the	initiative.
Power	users	are	actors	who	would	come	into	the	picture	later	in	the	initiative.
These	are	users	who	go	beyond	what	a	business	analyst	would	do	to	provide
analytics	to	end	users.	Data	scientists	also	make	up	this	group.

The	Solution

Figure	21-01:	The	Solution
In	principle,	the	solution	can	be	depicted	as	what	you	see	in	Figure	21-01.
Information	that	is	present	in	multiple	data	sources	needs	to	be	brought	into	the
system	on	to	a	data	repository.	The	three	types	of	users	would	want	to	access	and
manipulate	information	in	multiple	ways.	The	end	user	needs	to	access	and	read
report	and	dashboards	to	act	upon	the	insights.	To	facilitate	that,	the	business
users	will	create	perform	the	data	cleansing,	structuring,	and	formulating	of	data
and	load	them	to	datasets,	and	then	create	reports	and	dashboards.	The	power
users	will	go	beyond	what	the	business	users	do	to	create	complex	datasets	and
analyses	to	provide	to	the	end	users.	In	many	cases,	the	business	user	will	play
the	same	role	as	the	power	user.
As	simple	as	the	above	narrative	explains	the	solution,	the	process	of	doing	this
can	quickly	become	a	nightmare.	Power	BI	has	evolved	over	the	years	and
months	into	a	tool	that	does	wonders	with	data.	Many	an	insightful	report	and
dashboard	complete	with	beautiful	layouts	have	been	built,	and	those	who	use	its
insights	to	make	informed	decisions	have	seen	value	in	these	“solutions”.
The	issue,	however,	occurs	when	many	such	overzealous	solutions	start
cluttering	the	environment	that	it	becomes	quite	hard	to	maintain.	Moreover,	you
would	not	know	if	all	these	solutions	indeed	possessed	the	single	version	of	the
truth.	How	one	set	of	users	define	a	metric,	or	a	KPI	differs	from	how	others
define	them.	When	these	two	sets	of	users	come	together	at	a	quarterly	sales
summit	and	start	presenting	their	insights,	everything	but	fisticuffs	break	loose.
It	becomes	evident	that	when	self-service	business	intelligence	starts	hitting	the

brinks	of	madness,	a	method	needs	to	be	put	into	place	to	contain	it
The	solution	that	we	are	going	to	focus	on	in	this	chapter	will	be	limited	to
Power	BI	Pro	functionality.	Power	BI	Premium	features	are	deliberately	left	out
since,	as	suggested	in	the	Background,	we	will	be	focusing	on	small
organizations.

Data	Movement	and	Processing
Data	Movement	and	Processing	in	Typical	Cases
The	movement	of	data	from	its	sources,	all	the	way	to	the	reports	follows	a
specific	path.	The	following	diagram	outlines	such	a	path	that	is	similar	to	what
traditional,	enterprise,	or	even	modern	big	data	solutions	make	use	of:

Figure	21-02:	Typical	Data	Integration	and	Modelling	Architecture
In	a	typical	data	integration	architecture,	the	Ingestion	layer	pulls	in	data	from
the	source	systems	and	dumps	them	as-is	on	the	Staging	layer.	Of	course,	the
staging	layer	will	be	structured	for	effective	dumping.	This	is	the	extract	and
load	mechanism	that	we	talk	about	in	big	data	scenarios	where	data	is	ingested	to
a	data	lake,	or	in	traditional	cases	when	data	is	extracted	and	staged	from	source
systems,	to	avoid	performance	issues	at	the	source.
Then,	when	the	need	for	analysis	and	reporting	arises,	relevant	data	will	be
cleansed,	transformed	and	integrated	via	the	Integration	layer	into	the	Data
Model	layer	(which	essentially	will	be	transforming	data	onto	a	relational	data
warehouse	or	data	mart,	for	example).	The	data	model	will	evolve	as	more	and
more	requirements	are	fulfilled	but	will	remain	the	base	organization-wide.
The	Semantic	layer	provides	data	modelled	for	the	business	at	a	business
function-specific	level,	be	it	descriptive,	diagnostic,	or	even	prescriptive.	All	that
the	users	must	do	is	use	it	in	the	Analytical	layer	in	various	ways;	an	example	is

a	self-service	analytical	report.
The	complete	data	movement	pipeline	is	facilitated	and	coordinated	by	the
Orchestration	layer.
Data	Movement	and	Integration	in	Power	BI
Now,	in	the	Power	BI-based	scenario,	not	all	the	above	layers	can	be	segregated
as	they	are,	and	they	need	not	be	either.	For	one,	the	above	is	ideal	when
analytics	is	designed	and	implemented	for	an	enterprise	since	multiple
technologies	are	used	for	specialized	tasks.	Hence,	in	our	case,	let’s	try	looking
to	replicate	the	above	as	best	as	we	could,	but	at	the	same	time	combine	layers	to
overcome	technical	hurdles	imposed	by	the	single	technology	that	is	in	focus
here.

Figure	21:03:	Data	Integration	and	Modelling	on	Power	BI
In	the	Power	BI-only	universe,	one	of	the	disadvantages	that	we	have	is	the	lack
of	a	staging	ground.	However,	this	need	not	be	a	hindrance.	We	will	utilize
Power	BI	Dataflows	to	extract	and	prep	entities	that	will	be	used	as	the	basis	for
dimensions	across	multiple	business	units.	Think	of	Dataflows	entities	as	the
catchall	dimension	table	of	a	data	warehouse.	It	will	possess	all	the	possible
attributes	of	every	dimension.
Take	a	look	at	Figure	21-04,	which	is	the	solution	architecture;	it	shows	three
layers,	the	curated	staging	layer,	the	business	function	layer,	and	the	end	user
layer.	To	understand	how	the	data	integration	and	modelling	architecture
(Figure	21-03)	correlates	with	the	solution	architecture,	you	will	need	to	refer	to
both	diagrams	when	you	read	the	rationalization	below.

Figure	21-04:	Solution	Architecture
Curated	Staging	Layer
First	up,	to	stage	data,	we	do	not	have	the	luxury	of	a	dedicated	storage	area.
Hence,	staging	data	as-is	will	not	make	much	sense.	Hence,	we	will	build	a	set
of	entities	in	the	curated	staging	layer.	This	layer	will	serve	as	a	stage,	but	with
cleansed	data,	with	each	entity	containing	all	the	information	that	will	be
required	across	business	functions.
Now,	the	type	of	data	that	is	used	for	analysis	is	categorized	as	dimensions	and
facts.	Dimensions	are	used	across	the	organization,	some	more	than	others.
Hence,	if	a	sales	analyst	from	the	sales	department	creates	and	uses	the	Product
dimension	for	their	sales	analysis	reports	and	dashboards,	it	would	only	make
sense	that	the	same	dimension	is	used	for	marketing	campaign	analysis.	Of
course,	the	attributes	that	make-up	product	in	sales	would	defer	from	those	that
make-up	product	in	marketing.	Hence,	it	is	important	that	all	possible	attributes
are	available	when	creating	a	dimension	so	that	it	would	cater	to	various	types	of
analyses	and	business	units.
Therefore,	one	of	the	first	things	that	will	have	to	be	defined	are	entities.	Entities
are	objects	that	are	singular	and	identifiable	within	an	organization.	It	is	the
entities	that	morph	into	dimensions	based	on	need.	Information	that	makes	up	an
entity	may	come	from	multiple	sources,	and	they	all	need	to	be	combined	and
structured	appropriately	before	being	used	across	the	business.

Therefore,	the	first	step	would	involve	setting	up	a	workspace	that	will	only
house	entities.	These	entities	will	be	created	on	Power	BI	using	Dataflows.	This
is	what	will	make	up	the	curated	staging	layer:	Data	extracted,	cleansed,	and
stored	as	Dataflows.	The	layer	will	consist	of	a	workspace	dedicated	to
maintaining	Dataflows	of	entities	for	the	organization	(Entities	workspace).
Think	of	this	as	the	entity	vault,	and	would	only	contain	dataflows	of	entities,
and	no	datasets,	reports	nor	dashboards.	Dataflows,	once	created,	can	be
accessed	from	other	workspaces.	This	will	allow	users	from	across	multiple
disciplines	to	access	the	Dataflows	and	build	dimensions	that	are	unique	to	their
business	context.	Typically,	it	would	be	the	business	analyst	role	that	performs
the	task	of	identifying,	designing,	and	creating	dataflows	for	each	required
entity.
This	is	Process	A	depicted	in	Figure	21-03.
Business	Function	Layer
The	next	step	will	be	the	exercise	of	creating	packages	of	business	process	or
business	function-specific	content,	for	example,	sales	or	finance.	These	packages
will	be	workspaces	that	belong	to	the	business	function	layer,	and	one
workspace	per	business	function	will	be	built.	Hence,	you	will	have	a	Sales
workspace,	a	Finance	workspace,	and	more.
Here,	the	analyst	will	create	dimensions	based	on	the	entities	customized	for	the
current	business	function.	If	it	is	the	sales	business	unit	that	we	are	looking	at	for
example,	and	the	Product	dimension	is	one	of	those	being	built,	then	this
dimension	will	be	customized	to	suit	the	needs	of	sales	personnel,	for	instance,
including	a	product	hierarchy,	skipping	specific	columns,	and	modifying	other
columns.	If	the	marketing	business	unit	also	needs	the	product	dimension	for
their	analysis,	they	will	be	provided	with	their	own	one	customized	to	their
specific	needs.	Each	of	these	dimensions	will	be	derived	from	one	place:	The
Entities	dataflow	from	the	curated	staging	layer	and	built	separately	within	a
workspace	of	their	own	context,	inside	a	dataset	in	the	form	of	a	Query,	using
Power	BI	Desktop.
This	is	Process	B	depicted	in	Figure	21-03.
Next	up,	we	have	facts	(or	the	transactions)	that	will	be	pulled	out	of	one	or
more	systems.	The	data	for	facts	will	naturally	be	more	significant	in	record	size,
and	sometimes	more	extensive	in	terms	of	columns	than	dimensions.
Transactional	data	are	usually	business	function-specific,	hence	staging	them	as

entities	will	not	make	sense.		The	fact	data	will	follow	the	long	path	of	being
ingested,	transformed	and	integrated	straight	to	the	data	model	layer	within	a
Power	BI	dataset.	The	fact	tables	will	meet	the	dimension	tables	within	this
dataset	as	queries	on	Power	BI	Desktop.	So,	unlike	on	a	data	warehouse,	where
data	can	be	staged,	and	stored	temporarily,	in	the	world	of	Power	BI	data
preparation	is	mostly	dealt	with	dynamically.
This	is	Process	C	from	Figure	21-03.
The	datasets	are	finalized	when	semantic	modelling	is	performed	on	top	of	the
queries.	This	is	done	by	creating	measures,	formatting	them,	creating	hierarchies
on	the	dimensions	to	further	enhance	them,	hiding	columns	that	have	no
business	purpose,	creating	relationships	among	the	dimensions	and	facts,	and
more.	This	is	when	you	will	have	the	entire	business	function-specific	semantic
model.
This	is	Process	D	from	Figure	21-03.
The	next	step,	within	the	business	function	layer,	is	to	build	the	reports	and	then
dashboards	off	them	(if	required).	These	reports	will	be	built	off	the	dataset.
However,	when	building	the	reports,	the	best	practice	would	be	to	first	publish
the	dataset	to	the	Power	BI	service	onto	the	business	function-specific
workspace	and	then	build	reports	off	a	fresh	instance	of	Power	BI	Desktop	by
connecting	to	the	published	dataset.	Reports	can	also	be	created	off	the	Power	BI
portal	via	a	web	browser,	if	necessary.
This	is	Process	E	depicted	in	Figure	21-03.
The	business	function-specific	workspaces	will	be	owned	and	maintained	by	a
set	of	business	analysts	who	belong	to	that	business	function,	i.e.	sales	analysts
will	be	responsible	for	the	creation,	maintenance	and	governance	of	content	of
the	sales	workspace,	while	market	analysts	will	take	care	of	the	marketing
workspace.
What	you	will	ultimately	have	are	one	or	more	datasets	relating	to	the	business
function,	reports	built	off	these	datasets,	and	dashboards	if	necessary.	All	of
these	can	be	packages	if	necessary	and	published	as	an	app	within	the
organization	(Workspaces	A	&	B).	Each	of	these	workspaces	will	be	managed	by
analysts	from	the	related	business	function,	i.e.,	finance	will	put	out	a	finance
workspace/app,	sales	would	do	the	same,	and	so	forth.
So	now	that	we	have	departmental	analytics	packaged	into	workspaces.	These
will	become	standard	across	the	organization,	and	users	and	analysts	from	across

the	organization	can	tap	into	these	for	their	analytical	needs,	apart	from	having
their	own	analytics.	However,	it	is	a	good	idea	that	these	business	function-
specific	datasets	be	promoted	for	use	by	others,	thus	indicating	that	the	dataset	is
indeed	something	that	has	been	relatively	used	and	tested.	This	would	give
confidence	to	users	of	the	organization	that	the	dataset	can	be	used	to	answer
crucial	business	questions.	These	datasets	can	be	further	endorsed	by	going
through	a	certification	process	that	will	allow	a	specified	select	set	of	users,
ideally,	those	who	are	subject	matter	experts	of	the	business	function	domain	to
endorse	the	dataset,	thus	enabling	wider	adoption	and	trust	across	the
organization.

Figure	21-05:	Options	to	promote	and	certify	a	dataset
End	User	Layer
Business	users	from	across	the	organization	can	build	upon	the	packaged
business	function-specific	datasets	and	reports	by	bringing	them	in,	by	building
reports	on	top	of	these	datasets	and	creating	their	own	datasets	and	reports
within	their	workspace	(Workspace	C).	Management	dashboards	that	showcase
aspects	of	the	entire	organization,	drilling	through	to	individuals	reports	from

various	business	functions	is	an	excellent	use	case	to	illustrate	this.

Security
The	containers	that	we	work	within	this	architecture	are	workspaces,	and	as
such,	the	Entities	workspace	needs	one	or	more	contributors	who	will	perform
the	task	of	creating	entities	using	dataflows.	All	users	who	will	need	access	to
consume	the	entities	can	be	assigned	the	viewer	role,	so	that	they	may	not
modify	the	contents	of	this	workspace.	A	good	idea	will	be	to	create	AD	security
groups	for	the	viewers	of	the	entities,	add	the	viewers	to	the	group,	and	then	set
up	the	group	as	a	viewer	on	the	Entities	workspace.
The	viewers	will	be	added	as	contributors	on	their	respective	business	function
workspaces,	and	here	too	these	contributors	can	be	bundled	up	inside	an	AD
security	group.	Users	from	outside	of	the	business	functions	may	be	included	as
viewers,	and	this	time	via	another	AD	security	group.

Development	life-cycle
Source	control
Unlike	a	solution	where	a	development	team	completes	building	the	solution,
setting	it	up,	and	leaving	the	users	just	to	use	the	system,	a	solution	such	as	these
involves	the	users’	active	participation.	Hence	when	source-controlling	the	code
that	was	crafted	for	the	dataflows,	datasets	and	reports	need	to	be	versioned	and
stored.
The	easiest	and	most	straightforward	method	for	source	control	will	be	to	use
OneDrive	or	SharePoint.	These	technologies	have	a	Check	in/Check	out	function
that	allows	you	to	keep	track	of	a	file’s	history	of	changes,	which	makes	it	ideal
to	double	up	for	source	control.	Azure	DevOps	can	also	be	used	with	a	five-user-
free	deal,	is	purpose-built	and	is	loaded	with	functionality.	However,	it	can	be	an
overkill.

Figure	21-06:	Check	out	function	on	SharePoint
Regardless	of	the	approach	that	we	utilize,	we	need	to	be	cognizant	to	the	fact
that	not	all	components	of	the	solution	can	be	source	controlled	in	a
straightforward	manner.	When	listed	down,	this	is	what	it	looks	like:

Component Is	source-control
straight	forward?

Method

Dataflows No Copy	Power	Query
code	behind	from	the
Advanced	editor,	paste
to	a	text	editor,	before
being	saved.

Datasets Yes Save	the	PBI	desktop

file	used	to	create	the
dataset.

Reports Yes Save	the	PBI	desktop
file	used	to	create	the
report

Dashboards No No	source	control
mechanism	available

Figure	21-07:	Source	control	likelihood	of	components

Deployment
Like	any	solutions	development	practice,	a	solution	such	as	this	will	have	to
follow	a	specific	deployment	process	in	conjunction	with	the	source	control
process.	An	easy	approach	to	take	will	be	through	the	utilization	of	a	sandbox
workspace,	where	business	users	can	build	and	test	their	data	structures	and
reports	first.	
The	process	of	development	will	start	within	the	sandbox	workspaces	where	the
business	analysts	will	start	by	building	the	dataflows	to	create	the	entities	within
a	dataflow	called	Entities.	As	they	are	completed	the	Power	Query	source	of
each	of	the	entities	will	be	copied	to	a	text	file,	named	with	the	name	of	the
entity	and	put	into	source	control.	The	next	step	of	creating	the	datasets	will	take
place	on	the	desktops	of	the	business	analysts,	where	they	would	create	datasets
on	Power	BI	Desktop	and	then	published	to	the	business	function-specific
workspaces.	Once	published,	these	*.pbix	files	will	be	source	controlled	in
appropriately-named	folders.	Reports,	however,	will	not	be	created	on	the	same
file	that	houses	the	datasets.	Instead,	reports	will	be	created	in	separate	*.pbix
files	connecting	to	the	published	datasets	on	the	Power	BI	service.	These	files,
too,	will	be	published	to	the	appropriate	workspaces	before	being	source
controlled.	One	thing	that	cannot	be	source	controlled,	however,	are	the
dashboards	that	you	build	off	report	parts.
Once	all	the	development	is	completed	and	tested	on	your	sandbox,	you	will
have	to	“push”	your	development	to	the	“live”	or	“production”	environment.
This	is	where	you	will	have	to	“replicate”	your	development	by	pulling	out	the
code	from	source	control	and	applying	it	on	the	new	environment.	If	each	of	the
components	that	made	up	the	solution	were	able	to	be	saved	as	files,	then	the
application	would	be	quite	straightforward.	However,	in	the	case	components
such	as	dataflows,	you	will	have	to	re-create	the	steps,	with	the	only	“easy	part”
being	copying	the	code	over	from	source	control.

One	thing	that	you	would	need	to	keep	in	mind	while	pushing	your	development
to	the	live	environment	is	that	data	source	connectivity	and	credentials	may	have
to	be	altered	at	the	dataflow,	dataset,	and	report	levels.
Going	through	this	process	of	sandbox-first,	and	then	going	live	will	increase
your	implementation	effort,	and	will	be	too	much	of	an	overkill	for	specific
organizations.	In	cases	like	that	the	sandbox	may	be	skipped	as	long	as	a	similar
process	of	source	control	is	set	up	as	a	process	for	developing	the	primary
solution.

Summing	it	up
To	conclude,	Power	BI	is	a	versatile	tool,	which	can	work	on	the	sidelines	as	a
prototyping	tool,	and	at	the	same	time	measure	up	to	provide	a	complete
business	intelligence	solution.	Solutioning,	however,	is	not	just	about	building
data	models	and	reports	to	solve	business	problems.	It	is	to	provide	a	streamlined
and	structured	process	to	build	data	models	and	reports	to	solve	business
problems,	so	that	business	users	can	be	efficient,	data	is	ensured	to	be	relevant
and	reliable,	while	end	users	will	know	where	to	go	for	which	piece	of
information.	This	can	be	achieved	quite	well	with	Power	BI	by	architecting	and
designing	the	solution	along	with	the	ideas	presented	in	this	chapter.

	
About	the	Author

Gogula	is	a	12-time	Data	Platform	MVP	hailing	from	Sri	Lanka.	He	currently
provides	technical	leadership	for	Intellint,	the	business	intelligence	and	analytics
arm	of	Fortude.	14	of	his	19	years	in	technology	has	been	on	data	and	analytics
on	the	Microsoft	space,	now	mainly	focused	on	the	cloud.	His	experience	is
complemented	with	a	passion	for	data	and	analytics	through	his	involvement	in
technical	communities,	writing,	speaking,	mentoring,	speaking,	and	serving	as
subject	matter	expert	for	Microsoft	certifications.	He	is	the	community	leader	of
the	Sri	Lankan	Data	Community	and	is	also	PASS	regional	mentor	for	South
Asia.
	
	

[1]	http://www.businessdictionary.com/definition/governance.html

